References
- M.J. Gonzàlez-Munōz, M.A. Rodriguez, S. Luque, J.R. Álvarez,
Recovery of heavy metals from metal industry wastewaters
by chemical precipitation and nanofiltration, Desalination,
200 (2006) 742–744.
- M. Breida, S.A. Younssi, M. El Rhazi, M. Bouhria, Removal of
heavy metals by tight γ-Al2O3 ultrafiltration membrane at low
pressure, Desal. Water Treat., 167 (2019) 231–244.
- R. Kiefer, A.I. Kalinitchev, W.H. Höll, Column performance of
ion exchange resins with aminophosphonate functional groups
for elimination of heavy metals, React. Funct. Polym., 67 (2007)
1421–1432.
- V. Innocenzi, F. Veglio, Separation of manganese, zinc and nickel
from leaching solution of nickel-metal hydride spent batteries
by solvent extraction, Hydrometallurgy, 129–130 (2012) 50–58.
- A.H. Sulaymon, A.O. Sharif, T.K. Al-Shalchi, Removal of
cadmium from simulated wastewaters by electrodeposition
on stainless steel tubes bundle electrode, Desal. Water Treat.,
29 (2011) 218–226.
- A. Machrouhi, M. Farnane, A. Elhalil, M. Abdennouri,
H. Tounsadi, N. Barka, Heavy metals biosorption by
Thapsia transtagana stems powder: kinetics, equilibrium and
thermodynamics, Moroccan J. Chem., 7 (2019) 98–110.
- M. Farnane, A. Machrouhi, A. Elhalil, H. Tounsadi,
M. Abdennouri, S. Qourzal, N. Barka, Process optimization of
potassium hydroxide activated carbon from carob shell biomass
and heavy metals removal ability using Box–Behnken design,
Desal. Water Treat., 133 (2018) 153–166.
- A. Machrouhi, H. Alilou, M. Farnane, S. El Hamidi, M. Sadiq,
M. Abdennouri, H. Tounsadi, N. Barka, Statistical optimization
of activated carbon from Thapsia transtagana stems and dyes
removal efficiency using central composite design, J. Sci.: Adv.
Mater. Devices, 4 (2019) 544–553.
- S. Hashemian, K. Salari, Z.A. Yazdi, Preparation of activated
carbon from agricultural wastes (almond shell and orange
peel) for adsorption of 2-pic from aqueous solution, J. Ind. Eng.
Chem., 20 (2014) 1892–1900.
- P.P. Ndibewu, C.M. Kede, P.G. Tchieta, H.Z. Poumve,
A.N. Tchakounte, Simultaneous adsorption of mercury(II)
and zinc(II) ions from aqueous solution onto activated carbons
derived from a lowland bioresource waste, J. Appl. Surf.
Interfaces, 5 (2019) 21–30.
- J.B. Mathangi, M.H. Kalavathy, Optimization of process
parameters for the adsorption of nickel onto activated carbon
using response surface methodology, Desal. Water Treat.,
115 (2018) 115–125.
- A. El Nemr, A. El-Sikaily, A. Khaled, O. Abdelwahab, Removal
of toxic chromium from aqueous solution, wastewater and
saline water by marine red alga Pterocladia capillacea and its
activated carbon, Arabian J. Chem., 8 (2015) 105–117.
- H. Tounsadi, A. Khalidi, M. Farnane, A. Machrouhi, A. Elhalil,
N. Barka, Adsorptive removal of heavy metals from aqueous
solution using chemically activated Diplotaxis harra biomass,
Surf. Interfaces, 4 (2016) 84–94.
- J. Kazmierczak-Razna, B. Gralak-Podemska, P. Nowicki,
R. Pietrzak, The use of microwave radiation for obtaining
activated carbons from sawdust and their potential application
in removal of NO2 and H2S, Chem. Eng. J., 269 (2015) 352–358.
- S.N. Sun, Q.F. Yu, M. Li, H. Zhao, C.X. Wu, Preparation of
coffee-shell activated carbon and its application for water
vapor adsorption, Renewable Energy, 142 (2019) 11–19.
- S. Mondal, K. Sinha, K. Aikat, G. Halder, Adsorption
thermodynamics and kinetics of ranitidine hydrochloride onto
superheated steam activated carbon derived from mung bean
husk, J. Environ. Chem. Eng., 3 (2015) 187–195.
- M. Shoaib, H.M. Al-Swaidan, Optimization and characterization
of sliced activated carbon prepared from date palm tree
fronds by physical activation, Biomass Bioenergy, 73 (2015)
124–134.
- L. Niazi, A. Lashanizadegan, H. Sharififard, Chestnut oak shells
activated carbon: preparation, characterization and application
for Cr(VI) removal from dilute aqueous solutions, J. Cleaner
Prod., 185 (2018) 554–561.
- A. Shehzad, M.J.K. Bashir, S. Sethupathi, J.-W. Lim,
Simultaneous removal of organic and inorganic pollutants from
landfill leachate using sea mango derived activated carbon
via microwave induced activation, Int. J. Chem. Reactor Eng.,
14 (2016) 991–1001.
- G.-Q. Li, F.-H. Tian, Y.-F. Zhang, J.-L. Ding, Y.-L. Fu, Y. Wang,
G.-J. Zhang, Bamboo/lignite-based activated carbons produced
by steam activation with and without ammonia for SO2
adsorption, Carbon, 85 (2015) 448.
- L. Lopez, F.C. Janna, S.K. Bhatia, Effect of activating agents: flue
gas and CO2 on the preparation of activated carbon for methane
storage, Energy Fuels, 29 (2015) 6296–6305.
- S.-A. Sajjadi, A. Meknati, E.C. Lima, G.L. Dotto, D.I. Mendoza-
Castillo, I. Anastopoulos, F. Alakhras, E.I. Unuabonah, P. Singh,
A. Hosseini-Bandegharaei, A novel route for preparation of
chemically activated carbon from pistachio wood for highly
efficient Pb(II) sorption, J. Environ. Manage., 236 (2019) 34–44.
- T. Mahmood, R. Ali, A. Naeem, M. Hamayun, M. Aslam,
Potential of used Camellia sinensis leaves as precursor for
activated carbon preparation by chemical activation with
H3PO4; optimization using response surface methodology,
Process Saf. Environ. Prot., 109 (2017) 548–563.
- N.T. Abdel-Ghani, G.A. El-Chaghaby, M.H. ElGammal,
E.-S.A. Rawash, Optimizing the preparation conditions of
activated carbons from olive cake using KOH activation,
New Carbon Mater., 31 (2016) 492–500.
- Y. El Maguana, N. Elhadiri, M. Bouchdoug, M. Benchanaa,
Study of the influence of some factors on the preparation of
activated carbon from walnut cake using the fractional factorial
design, J. Environ. Chem. Eng., 6 (2018) 1093–1099.
- M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste
materials as potential sustainable precursors used for activated
carbon production: a review, Renewable Sustainable Energy
Rev., 46 (2015) 218–235.
- J. Antony, R.K. Roy, Improving the process quality using
statistical design of experiments: a case study, Qual. Assur.,
6 (1998) 87–95.
- H.P. Boehm, Surface oxides on carbon and their analysis:
a critical assessment, Carbon, 40 (2002) 145–149.
- J.S. Noh, J.A. Schwarz, Estimation of the point of zero charge
of simple oxides by mass titration, J. Colloid Interface Sci.,
130 (1989) 157–164.
- S. Das, S. Mishra, Box–Behnken statistical design to optimize
preparation of activated carbon from Limonia acidissima shell
with desirability approach, J. Environ. Chem. Eng., 5 (2017)
588–600.
- Y.H. Li, Q.J. Du, X.D. Wang, P. Zhang, D.C. Wang, Z.H. Wang,
Y.Z. Xia, Removal of lead from aqueous solution by activated
carbon prepared from Enteromorpha prolifera by zinc chloride
activation, J. Hazard. Mater., 183 (2010) 583–589.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38 (1916)
2221–2295.
- H. Freundlich, W. Heller, The adsorption of cis- and transazobenzene,
J. Am. Chem. Soc., 61 (1939) 2228–2230.
- A. Ebrahimi, M. Ehteshami, B. Dahrazma, Isotherm and kinetic
studies for the biosorption of cadmium from aqueous solution
by Alhaji maurorum seed, Process Saf. Environ. Prot., 98 (2015)
374–382.
- D. Mohan, K.P. Singh, Single- and multi-component adsorption
of cadmium and zinc using activated carbon derived from
bagasse—an agricultural waste, Water Res., 36 (2002) 2304–2318.
- Z.Z. Guo, J.L. Fan, J. Zhang, Y. Kang, H. Liu, L. Jiang,
C.L. Zhang, Sorption heavy metal ions by activated carbons
with well-developed microporosity and amino groups derived
from Phragmites australis by ammonium phosphates activation,
J. Taiwan Inst. Chem. Eng., 58 (2016) 290–296.
- P.D. Meshram, S.S. Bhagwat, Removal of Cd(II) Ions from
Aqueous Solution by Adsorption on ZnCl2-Activated Carbon:
Equilibrium and Kinetic Study, I. Regupathi, K. Vidya Shetty,
M. Thanabalan, Eds., Recent Advances in Chemical Engineering,
Springer, Singapore, 2016.
- H. Kasaini, P.T. Kekana, A.A. Saghti, K. Bolton, Adsorption
characteristics of cobalt and nickel on oxalate-treated activated
carbons in sulfate media, World Academy of Science, Eng.
Technol., 76 (2013) 707–721.
- R. Prabakaran, S. Arivoli, Removal of cobalt(II) from aqueous
solutions by adsorption on low cost activated carbon, Int. J. Sci.
Eng. Technol. Res., 2 (2013) 271–283.
- H. Tounsadi, A. Khalidi, M. Farnane, M. Abdennouri,
N. Barka, Experimental design for the optimization of
preparation conditions of highly efficient activated carbon from
Glebionis coronaria L. and heavy metals removal ability, Process
Saf. Environ. Prot., 102 (2016) 710–723.
- H. Tounsadi, A. Khalidi, A. Machrouhi, M. Farnane,
R. Elmoubarki, A. Elhalil, M. Sadiq, N. Barka, Highly
efficient activated carbon from Glebionis coronaria L. biomass:
optimization of preparation conditions and heavy metals
removal using experimental design approach, J. Environ.
Chem. Eng., 4 (2016) 4549–4564.
- Y.P. Guo, D.A. Rockstraw, Physical and chemical properties of
carbons synthesized from xylan, cellulose, and kraft lignin by
H3PO4 activation, Carbon, 44 (2006) 1464–1475.
- M. Jagtoyen, F. Derbyshire, Some considerations of the origins
of porosity in carbons from chemically activated wood, Carbon,
31 (1993) 1185–1192.
- S. Sato, K. Yoshihara, K. Moriyama, M. Machida, H. Tatsumoto,
Influence of activated carbon surface acidity on adsorption
of heavy metal ions and aromatics from aqueous solution,
Appl. Surf. Sci., 253 (2007) 8554–8559.
- C. Akmil Başar, A. Karagunduz, B. Keskinler, A. Cakici, Effect
of presence of ions on surface characteristics of surfactant
modified powdered activated carbon (PAC), Appl. Surf.
Sci., 218 (2003) 170–175.