References

  1. N. Gordon, J. Economy, Nanometallic particles for oligodynamic microbial disinfection, Nanotechnol. Appl. Clean Water, 3 (2009) 3–15, doi: 10.1016/B978-0-8155-1578-4.50010-X.
  2. B. Horst, F.H.H. Brill, Antimicrobial efficacy of modern wound dressings: oligodynamic bactericidal versus hydrophobic adsorption effect, Wound Med., 5 (2014) 16–20.
  3. S. Rtimi, M. Pascu, R. Sanjines, C. Pulgarin, M. Ben-Simon, A. Houas, J.C. Lavanchy, J. Kiwi, ZrNO–Ag co-sputtered surfaces leading to E. coli inactivation under actinic light: evidence for the oligodynamic effect, Appl. Catal., B, 138 (2013) 113–121.
  4. T. Schmidt-Braeklin, A. Streitbuerger, G. Gosheger, F. Boettner, M. Nottrott, H. Ahrens, B. Moellenbeck, Silver-coated megaprostheses: review of the literature, Eur. J. Orthop. Surg. Traumatol., 27 (2017) 483–489.
  5. J.L. Clement, P.S Jarrett, Antibacterial silver, Met.-Based Drugs, 1 (1994) 467–482.
  6. B. Van Aken, L.S. Lin, Effect of the disinfection agent’s chlorine, UV irradiation, silver ions, and TiO2 nanoparticles/near-UV on DNA molecules, Water Sci. Technol., 64 (2011) 1226–1232.
  7. F.X. Abad, R.M. Pinto, J.M. Diez, A. Bosch, Disinfection of human enteric viruses in water by copper and silver in combination with low-levels of chlorine, Appl. Environ. Microbiol., 60 (1994) 2377–2383.
  8. Q. Bao, D. Zhang, P. Qi, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection, J. Colloid Interface Sci., 360 (2011) 463–470.
  9. K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P.J. Alvarez, Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, Water Res., 43 (2009) 715–723.
  10. W. Zhang, X.Z. Zhang, Adsorption of MS2 on oxide nanoparticles affects chlorine disinfection and solar inactivation, Water Res., 69 (2015) 59–67.
  11. H.Y. Zhang, V. Oyanedel-Craver, Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane coated point-of-use ceramic water filters, J. Hazard. Mater., 260 (2013) 272–277.
  12. H.Y. Zhang, V. Oyanedel-Craver, Evaluation of the disinfectant performance of silver nanoparticles in different water chemistry conditions, J. Environ. Eng. ASCE, 138 (2012) 58–66.
  13. M.F. Brugnera, M. Miyata, C.Q.F. Leite, M.V.B. Zanoni, Silver ion release from electrodes of nanotubes of TiO2 impregnated with Ag nanoparticles applied in photoelectrocatalytic disinfection, J. Photochem. Photobiol., A, 278 (2014) 1–8.
  14. I. De la Rosa-Gomez, M.T. Olguin, D. Alcantara, Antibacterial behavior of silver-modified clinoptilolite-heulandite rich tuff on coliform microorganisms from wastewater in a column system, J. Environ. Manage., 88 (2008) 853–863.
  15. L.P. Lukhele, R.W. Krause, Z.P. Nhlabatsi, B.B. Mamba, M.N. Momba, Copper and silver impregnated carbon nanotubes incorporated into cyclodextrin polyurethanes for the removal of bacterial and organic pollutants in water, Desal. Water Treat., 27 (2011) 299–307.
  16. O. Akhavan, E. Ghaderi, Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities, Surf. Coat. Technol., 204 (2010) 3676–3683.
  17. R. Bandyopadhyaya, M.V. Sivaiah, P.A. Shankar, Silverembedded granular activated carbon as an antibacterial medium for water purification, J. Chem. Technol. Biotechnol., 83 (2008) 1177–1180.
  18. X.X. Zhao, T. Toyooka, Y. Ibuki, Synergistic bactericidal effect by combined exposure to Ag nanoparticles and UVA, Sci. Total Environ., 458 (2013) 54–62.
  19. S. Agnihotri, S. Mukherji, S. Mukherji, Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver, Nanoscale, 5 (2013) 7328–7340.
  20. R.K. Sharma, S. Kumar, R.W. Ramteke, P.K. Ray, Disinfection of drinking-water by filtration through silver impregnated alumina, J. Environ. Sci. Health., Part A Environ. Sci. Eng. Toxic Hazard. Subst. Control, 25 (1990) 479–486.
  21. M. Azimzadehirani, M. Elahifard, S. Haghighi, M. Gholami, Highly efficient hydroxyapatite/TiO2 composites covered by silver halides as E. coli disinfectant under visible light and dark media, Photochem. Photobiol. Sci., 12 (2013) 1787–1794.
  22. N.T.T. Hoang, N.V. Suc, T.V. Nguyen, Bactericidal activities and synergistic effects of Ag-TiO2 and Ag-TiO2-SiO2 nanomaterials under UV-C and dark conditions, Int. J. Nanotechnol., 12 (2015) 367–379.
  23. S. Khan, I.A. Qazi, I. Hashmi, M.A. Awan, N.U.S.S. Zaidi, Synthesis of silver-doped titanium TiO2 powder-coated surfaces and its ability to inactivate Pseudomonas aeruginosa and Bacillus subtilis, J. Nanomater., 2013 (2013), 1–9 doi: 10.1155/2013/531010.
  24. R. Khaydarov, R. Khaydarov, B. Yuldashev, Experience of using energy-effective water disinfection devices, Water Supply Emergency Situations, 1 (2007) 127–132.
  25. X. Qu, J. Brame, Q. Li, P.J. Alvarez, Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse, Acc. Chem. Res., 46 (2013) 834–843.
  26. R. Manjumeena, D. Duraibabu, J. Sudha, P.T. Kalaichelvan, Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach, J. Environ. Sci. Health., Part A Toxic Hazard. Subst. Environ. Eng., 49 (2014) 1125–1133.
  27. M.L. Pedro-Botet, I. Sanchez, M. Sabria, N. Sopena, L. Mateu, M. García-Núñez, C.R. Joly, Impact of copper and silver ionization on fungal colonization of the water supply in health care centers: implications for immunocompromised patients, Clin. Infect. Dis., 45 (2007) 84–86.
  28. A. Alonso, X. Munoz-Berbel, N. Vigués, J. Macanás, M. Munoz, J. Mas, D.N. Muraviev, Characterization of fibrous polymer silver/cobalt nanocomposite with enhanced bactericide activity, Langmuir, 28 (2012) 783–790.
  29. H. Basri, A.F. Ismail, M. Aziz, Polyethersulfone (PES)-silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity, Desalination, 273 (2011) 72–80.
  30. H. Barani, M. Montazer, N. Samadi, T. Toliyat, Nano silver entrapped in phospholipids membrane: synthesis, characteristics and antibacterial kinetics, Mol. Membr. Biol., 28 (2011) 206–215.
  31. E. Joyce, S.S. Phull, J.P. Lorimer, T.J. Mason, The development and evaluation of ultrasound for the treatment of bacterial suspensions. a study of frequency, power and sonication time on cultured Bacillus species, Ultrason. Sonochem., 10 (2003) 315–318.
  32. P. Declerck, L. Vanysacker, A. Hulsmans, N. Lambert, S. Liers, F. Ollevier, Evaluation of power ultrasound for disinfection of both Legionella pneumophila and its environmental host Acanthamoeba castellanii, Water Res., 44 (2010) 703–710.
  33. O. Ayyildiz, S. Sanik, B. Ileri, Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency, Ultrason. Sonochem., 18 (2011) 683–688.
  34. G. Loraine, G. Chahine, C.T. Hsiao, J.K. Choi, P. Aley, Disinfection of gram-negative and gram-positive bacteria using DYNAJETS (R) hydrodynamic cavitating jets, Ultrason. Sonochem., 19 (2012) 710–717.
  35. P.R. Gogate, S. Mededovic-Thagard, D. McGuire, G. Chapas, J. Blackmon, R. Cathey, Hybrid reactor based on combined cavitation and ozonation: from concept to practical reality, Ultrason. Sonochem., 21 (2014) 590–598.
  36. V. Naddeo, M. Landi, V. Belgiorno, R.M.A. Napoli, Wastewater disinfection by combination of ultrasound and ultraviolet irradiation, J. Hazard. Mater., 168 (2009) 925–929.
  37. P.R. Gogate, Application of cavitational reactors for water disinfection: current status and path forward, J. Environ. Manage., 85 (2007) 801–815.
  38. T.J. Mason, S.S. Phull, J.P. Lorimer, Potential uses of ultrasound in the biological decontamination of water, Ultrason. Sonochem., 10 (2003) 319–323.
  39. S.S. Phull, A.P. Newman, J.P. Lorimer, B. Pollet, T.J. Mason, The development and evaluation of ultrasound in the biocidal treatment of water, Ultrason. Sonochem., 4 (1997) 157–164.
  40. S. Giannakis, S. Papoutsakis, E. Darakas, A. Escalas-Cañellas, C. Pétrier, C. Pulgarin, Ultrasound enhancement of near-neutral photo-Fenton for effective E. coli inactivation in wastewater, Ultrason. Sonochem., 22 (2015) 515–526.
  41. E. Joyce, T.J. Mason, S.S. Phull, J.P. Lorimer, The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions, Ultrason. Sonochem., 10 (2003) 231–234.
  42. F.B. Karel, Disinfection of Klebsiella pneumoniae using ultrasonic systems, J. Environ. Biol., 37 (2016) 10–13.
  43. F. Karel, Klebsiella pneumoniae disinfection with ultrasound and hydrogen peroxides, Appl. Ecol. Environ. Res., 17 (2019) 4159–4169.
  44. M.A. Butkus, M.P. Labare, J.A. Starke, K. Moon, M. Talbot, Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection, Appl. Environ. Microbiol., 70 (2004) 2848–2853.
  45. V.M. Gómez-López, M.I. Gil, A. Allende, J. Blancke, L. Schouteten, M.V. Selma, Disinfection capacity of highpower ultrasound against E. coli O157:H7 in process water of the fresh-cut industry, Food Bioprocess Technol., 7 (2014) 3390–3397.
  46. E. Joyce, A. Al‐Hashimi, T.J. Mason, Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry, J. Appl. Microbiol., 110 (2011) 862–870.
  47. T.J. Mason, A.J. Cobley, J.E. Graves, D. Morgan, New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound, Ultrason. Sonochem., 18 (2011) 226–230.
  48. S. Koda, T. Kimura, T. Kondo, H.A. Mitome, A standard method to calibrate sonochemical efficiency of an individual reaction system, Ultrason. Sonochem., 10 (2003) 149–156.
  49. H. Inez, J.E. Thompson, Inactivation of Escherichia coli by sonication at discrete ultrasonic frequencies, Water Res., 34 (2000) 3888–3893.
  50. G. Matafonova, V. Batoev, Review on low-and high-frequency sonolytic, sonophotolytic and sonophotochemical processes for inactivating pathogenic microorganisms in aqueous media, Water Res., 166 (2019) 1–11, doi: 10.1016/j.watres.2019.115085.
  51. K.Y. Yoon, J.H. Byeon, J.H. Park, J. Hwang, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ., 373 (2007) 572–575.
  52. S. Chernousova, M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal, Angew. Chem. Int. Ed., 52 (2013) 1636–1653.
  53. D.K. Tiwari, J. Behari, Biocidal nature of combined treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli DH5, Adv. Biol. Res., 3 (2009) 89–95.