References

  1. S. Kumar, H.T. Kwon, K.H. Choi, J.H. Cho, W. Lim, I. Moon, Current status and future projections of LNG demand and supplies: a global prospective, Energy Policy, 39 (2011) 4097–4104.
  2. A. Salehabadi, M.F. Umar, A. Ahmad, M.I. Ahmad, M. Rafatullah, Carbon-based nanocomposites in solid-state hydrogen energy storage technology: an overview, Int. J. Energy Res., 1 (2020) 1–15.
  3. Y. Funabashi, K. Kitazawa, Fukushima in review: a complex disaster, a disastrous response, Bull. At. Sci., 68 (2012) 9–21.
  4. A.A. Yaqoob, A. Khatoon, S.H.S. Mohd, K. Umar, T. Parveen, M.N.M. Ibrahim, A. Ahmad, M. Rafatullah, Outlook on the role of microbial fuel cells in remediation of environmental pollutants with electricity generation, Catalysts, 10 (2020) 819–853, doi: 10.3390/catal10080819.
  5. A.A. Yaqoob, T. Parveen, K. Umar, M.N.M. Ibrahim, Role of nanomaterials in the treatment of wastewater: a review, Water, 12 (2020) 495–525, doi: 10.3390/w12020495.
  6. S.Z. Abbas, T.C. Whui, K. Hossain, A. Ahmad, M. Rafatullah, Isolation and characterization of mercury resistant bacteria from industrial wastewater, Desal. Water Treat., 138 (2019) 128–133.
  7. A. Ahmad, S.H. Mohd-Setapar, S.C. Chuo, A. Khatoon, W.A. Wani, R. Kumar, M. Rafatullah, Recent advances in new generation dye removal technologies: novel search of approaches to reprocess waste water, RSC Adv., 5 (2015) 30801–30818.
  8. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches, J. Environ. Manage., 182 (2016) 351–366.
  9. M.F. Umar, A. Nasar, Reduced graphene oxide/polypyrrole/ nitrate reductase deposited glassy carbon electrode (GCE/RGO/ PPy/NR): biosensor for the detection of nitrate in wastewater, Appl. Water Sci., 8 (2018), doi: 10.1007/s13201-018-0860-1.
  10. Y. Wang, D. Chen, Y. Zou, Green textile materials and techniques for water resource protection, Desal. Water Treat., 122 (2018) 195–198.
  11. X. Yana, B.K. Yanga, C. Hua, W. Gonga, Pollution source positioning in a water supply network based on expensive optimization, Desal. Water Treat., 110 (2018) 308–318.
  12. G. Pranjali, M. Deepa, A.B. Nair, Nanotechnology in waste water treatment: a review, Int. J. Chem. Technol. Res., 5 (2013) 2303–2308.
  13. A.A. Yaqoob, M.N.M. Ibrahim, A review article of nanoparticles; synthetic approaches and wastewater treatment methods, Int. Res. J. Eng. Technol., 6 (2019) 1–7.
  14. S.K. Gunatilake, Methods of removing heavy metals from industrial wastewater, J. Multidiscip. Eng. Sci. Stud., 1 (2015) 1–7.
  15. A.A. Yaqoob, A. Serrà, M.N.M. Ibrahim, Advances and challenges in developing efficient graphene oxide-based ZnO photocatalysts for dye photo-oxidation, Nanomaterials., 10 (2020) 932–958, doi: 10.3390/nano10050932.
  16. M. Mustakeem, Electrode materials for MFCs: nanomaterial approach, J. Renewable Sustainable Energy, 4 (2015) 1459–1467.
  17. A.A. Yaqoob, M.N.M. Ibrahim, M. Rafatullah, Y.S. Chua, A. Ahmad, K. Umar, Recent advances in anodes for MFCs: an overview, Mater, 13 (2020) 2078–2106, doi: 10.3390/ma13092078.
  18. W. Guo, H. Song, L. Zhou, J. Sun, Simultaneous removal of sulfanilamide and bioelectricity generation in two-chambered microbial fuel cells, Desal. Water Treat., 57 (2016) 24982–24989.
  19. U. Schroder, F. Harnisch, L.T. Angenent, Microbial electrochemistry and technology: terminology and classification, Energy Environ. Sci., 8 (2015) 513–519.
  20. R. Nitisoravut, R. Regmi, Plant MFCs: a promising biosystems engineering, Renewable Sustainable Energy Rev., 76 (2017) 81–89.
  21. R. Kumar, L. Sing, A.W. Zularisam, F.I. Hai, MFCs is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances, Int. J. Energy Res., 42 (2018) 369–394.
  22. A.L. Schneider, H. Schell, S. Hild, K.M. Mangold, A. Tiehm, Studies into design and operation of microbial fuel cells using oxygen gas diffusion electrodes, Desal. Water Treat., 91 (2017) 222–227.
  23. K.Y. Kim, W. Yang, B.E. Logan, Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using MFCs, Water Res., 80 (2015) 41–46.
  24. P. Wu, Y. Wang, P. Wu, S. Lu, C. Yu, Effects of cathode materials on H2O2 production in microbial fuel cells, Desal. Water Treat., 153 (2019) 105–111.
  25. H.Y. Tsai, W.H. Hsu, Y.C. Huang, Characterization of carbon nanotube/graphene on carbon cloth as an electrode for aircathode MFCs, J. Nanomater., 3 (2015) 1–9.
  26. Y. Tao, H. Xue, L. Huang, P. Zhou, W. Yang, X. Quan, J. Yuan, Fluorescent probe based subcellular distribution of Cu(II) ions in living electrotrophs isolated from Cu(II)-reduced biocathodes of MFCs, Bioresour. Technol., 255 (2017) 316–325.
  27. J.C. Akunna, J. O’Keeffe, R. Allan, Reviewing factors affecting the effectiveness of decentralised domestic wastewater treatment systems for phosphorus and pathogen removal, Desal. Water Treat., 91 (2017) 40–47.
  28. E. Radzyminska-Lenarcik, K. Witt, The application of membrane extraction in the separation of zinc and cadmium ions, Desal. Water Treat., 128 (2018) 140–147.
  29. J.A. Wisniewski, S. Szerzyna, The removal of chromium ions from water in Donnan dialysis process, Desal. Water Treat., 128 (2018) 125–132.
  30. C.P.J. Isaac, A. Sivakumar, Removal of lead and cadmium ions from water using Annona squamosa shell: kinetic and equilibrium studies, Desal. Water Treat., 51 (2013) 7700–7709.
  31. A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M. Ismail, H.A.Qari, K. Umar, M.N.M. Ibrahim, Recent advances in metal decorated nanomaterials and their various biological applications: a review, Front. Chem., 19 (2020) 341–363, doi: 10.3389/fchem.2020.00341.
  32. E.P. Zapata, R.L. Ruiz, T. Harter, A.I. Ramirez, J. Mahlknecht, Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach, Sci. Total Environ., 470 (2014) 855–864.
  33. A. Bakir, I.S. O’Connor, S.J. Rowland, A.J. Hendriks, R.C. Thompson, Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life, Environ. Pollut., 219 (2016) 56–65.
  34. T. Bora, J. Dutta, Applications of nanotechnology in wastewater treatment—a review, J. Nanosci. Nanotechnol., 14 (2014) 613–626.
  35. D. Kolodynska, J. Bak, Biochars and their derivatives for removal of various types of impurities from aqueous solutions, Desal. Water Treat., 112 (2018) 42–52.
  36. C.M. Mehta, W.O. Khunjar, V. Nguyen, S. Tait, D.J. Batstone, Technologies to recover nutrients from waste streams: a critical review, Crit. Rev. Environ. Sci. Technol., 45 (2015) 385–427.
  37. K. Umar, A.A. Dar, M.M. Haque, N.A. Mir, M. Muneer, Photocatalysed decolourization of two textile dye derivatives, Martius Yellow and Acid Blue 129 in UV-irradiated aqueous suspensions of Titania, Desal. Water Treat., 46 (2012) 205–214.
  38. M. Vikas, G.S. Dwarakish, Coastal pollution: a review, Aquat. Procedia, 4 (2015) 381–388.
  39. K. Verma, K. Gupta, A. Gupta, A review on sewage disinfection and need of improvement, Desal. Water Treat., 56 (2015) 2867–2871.
  40. D.G.J. Larsson, Pollution from drug manufacturing: review and perspectives, Philos. Trans. R. Soc. London, Ser. B, 369 (2014) 530–571.
  41. R. Pal, M. Megharaj, K.P. Kirkbride, R. Naidu, Illicit drugs and the environment—a review, Sci. Total Environ., 463 (2013) 1079–1092.
  42. M.I. Din, M. Iqbal, Z. Hussain, R. Khalid, Bioelectricity generation from waste potatoes using single chambered microbial fuel cell, Energy Sources Part A, 31 (2020) 1–11, doi: 10.1080/15567036.2020.1797944.
  43. R. Kumar, L. Sing, Z.A. Wahid, M.F.M. Din, Exoelectrogens in MFCs toward bioelectricity generation: a review, Int. J. Energy Res., 39 (2015) 1048–1067.
  44. M. Guizani, M. Saitod, R. Ito, N. Funamizu, Combined FO and RO system for the recovery of energy from wastewater and the desalination of seawater, Desal. Water Treat., 154 (2019) 14–20.
  45. K. Chandrasekhar, Effective and nonprecious cathode catalysts for oxygen reduction reaction in MFCs, Microb. Electrochem. Technol., 4 (2019) 485–501.
  46. K. Michelson, R.E. Alcalde, R.A. Sanford, A.J. Valocchi, C.J. Werth, Diffusion-based recycling of flavins allows Shewanella oneidensis MR-1 to yield energy from metal reduction across physical separations, Environ. Sci. Technol., 53 (2019) 3480–3487.
  47. S.P. Jung, S. Pandit, Important factors influencing MFCs performance, Microb. Electrochem. Technol., 4 (2019) 377–406.
  48. S.Z. Abbas, M.Rafatullah, N. Ismail, M.I. Syakir, A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: mechanisms and future prospective, Int. J. Energy Res., 41 (2017)1242–1264.
  49. X. Hengduo, X. Leilei, Z. Shiling, Z. Yuechao, F.H. Liu, Reductive degradation of chloramphenicol by Geobacter metallireducens, Sci. China Technol. Sci., 1 (2019) 1–7.
  50. G. Anand, D. Waiger, N. Vital, J. Maman, L.J. Ma, S. Covo, How does Fusarium oxysporum sense and respond to nicotinaldehyde, an inhibitor of the NAD+ salvage biosynthesis pathway?, Front. Microbiol., 10 (2019) 329–340.
  51. Y. Tokunou, K. Saito, R. Hasegawa, K.H. Nealson, K. Hashimoto, H. Ishikita, Basicity of N5 in semiquinone enhances the rate of respiratory electron outflow in Shewanella oneidensis MR-1, bioRxiv, 1 (2019) 68–93.
  52. K.C. Wrighton, J.C. Thrash, R.A. Melnyk, J.P. Bigi, K.G. Byrne- Bailey, J.P. Remis, D. Schichnes, M. Auer, C.J. Chang, J.D. Coates, Evidence for direct electron transfer by a Gram-positive bacterium isolated from a MFCs, Appl. Environ. Microbiol., 77 (2011) 7633–7639.
  53. T. Zhang, C. Cui, S. Chen, H. Yang, P. Shen, The direct electrocatalysis of Escherichia coli through electroactivated excretion in MFCs, Electrochem. Commun., 10 (2008) 293–297.
  54. D.R. Lovley, The microbe electric: conversion of organic matter to electricity, Curr. Opin. Biotechnol., 19 (2008) 564–571.
  55. S.Z. Abbas, M. Rafatullah, N. Ismail, F.R. Shakoori, Electrochemistry and microbiology of microbial fuel cells treating marine sediments polluted with heavy metals, RSC Adv., 8 (2018) 18800–18813.
  56. M.F. Umar, S.Z. Abbas, M.N.M. Ibrahim, N. Ismail, M. Rafatullah, Insights into advancements and electrons transfer mechanisms of electrogens in benthic microbial fuel cells, Membranes, 10 (2020), doi: 10.3390/membranes10090205.
  57. M. Rahimnejad, A.A. Ghoreyshi, G. Najafpour, T. Jafary, Power generation from organic substrate in batch and continuous flow MFCs operations, Appl Energy, 88 (2011) 3999–4004.
  58. S. Ishii, S. Suzuki, T.M. Norden-Krichmar, K.H. Nealson, Y. Sekiguchi, Y.A. Gorby, Functionally stable and phylogenetically diverse microbial enrichments from MFCs during wastewater treatment, PLoS One, 7 (2012) 30–49.
  59. P.T. Ha, T.K. Lee, B.E. Rittmann, J. Park, I.S. Chang, Treatment of alcohol distillery wastewater using a Bacteroidetes-dominant thermophilic MFCs, Environ. Sci. Technol., 46 (2012) 3022–3030.
  60. K. Rengasamy, S. Berchmans, Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus, Bioresour. Technol., 104 (2012) 388–393.
  61. A. Aldrovandi, E. Marsili, L. Stante, P. Paganin, A. Giordano, Sustainable power production in a membrane-less and mediator-less synthetic wastewater MFCs, Bioresour. Technol., 100 (2009) 3252–3260.
  62. K. Stamatelatou, G. Antonopoulou, A. Tremouli, G. Lyberatos, Production of gaseous biofuels and electricity from cheese whey, Ind. Eng. Chem. Res., 50 (2010) 639–644.
  63. B. Min, Ó.B. Román, I. Angelidaki, Importance of temperature and anodic medium composition on MFCs performance, Biotechnol. Lett., 30 (2008) 1213–1218.
  64. Y.K. Wang, G.P. Sheng, W.W. Li, Y.X. Huang, Y.Y. Yu, R.J. Zeng, H.Q. Yu, Development of a novel bioelectrochemical membrane reactor for wastewater treatment, Environ. Sci. Technol., 45 (2011) 9256–9261.
  65. C. Abourached, M.J. English, H. Liu, Wastewater treatment by MFCs prior irrigation water reuse, J. Cleaner Prod., 137 (2016) 144–149.
  66. S.B. Velasquez-Orta, I.M. Head, T.P. Curtis, K. Scott, Factors affecting current production in MFCs using different industrial wastewaters, Bioresour. Technol., 102 (2011) 5105–5112.
  67. Y. Feng, X. Wang, B.E. Logan, H. Lee, Brewery wastewater treatment using air-cathode MFCs, Appl. Microbiol. Biotechnol., 8 (2008) 873–880.
  68. N. Samsudeen, T. Radhakrishnan, M. Matheswaran, Bioelectricity production from MFCs using mixed bacterial culture isolated from distillery wastewater, Bioresour. Technol., 195 (2015) 242–247.
  69. S.A. Patil, V.P. Surakasi, S. Koul, S. Ijmulwar, A. Vivek, Electricity generation using chocolate industry wastewater and its treatment in activated sludge based MFCs and analysis of developed microbial community in the anode chamber, Bioresour. Technol., 100 (2009) 5132–5139.
  70. Z. Liu, J. Liu, S. Zhang, Z. Su, Study of operational performance and electrical response on mediator-less MFCs fed with carbon-and protein-rich substrates, Biochem. Eng. J., 45 (2009) 185–191.
  71. D. Fangzhou, L. Zhenglong, Y. Shaoqiang, X. Beizhen, L. Hong, Electricity generation directly using human feces wastewater for life support system, Acta Astronaut., 68 (2011) 1537–1547.
  72. B.C. Jong, P.W.Y. Liew, M.L. Juri, B.H. Kim, A.Z.M. Dzomir, K.W. Leo, M.R. Awang, Performance and microbial diversity of palm oil mill effluent MFCs, Lett. Appl. Microbiol., 53 (2011) 660–667.
  73. J. Greenman, A. Gálvez, L. Giusti, I. Ieropoulos, Electricity from landfill leachate using MFCs: comparison with a biological aerated filter, Enzyme Microb. Technol., 44 (2009) 112–119.
  74. L. Lu, D. Xing, Z.J. Ren, Microbial community structure accompanied with electricity production in a constructed wetland plant MFCs, Bioresour. Technol., 195 (2015) 115–121.
  75. J. Dai, J.J. Wang, A.T. Chow, W.H. Conner, Electrical energy production from forest detritus in a forested wetland using MFCs, GCB Bioenergy, 7 (2015) 244–252.
  76. Y. Yuan, Q. Chen, S. Zhou, L. Zhuang, P. Hu, Improved electricity production from sewage sludge under alkaline conditions in an insert‐type air‐cathode MFCs, J. Chem. Technol. Biotechnol., 87 (2012) 80–86.
  77. V.R. Nimje, C.Y. Chen, H.R. Chen, C.C. Chen, Y.M. Huang, M.J. Tseng, K.C. Cheng, Y.F. Cheng, Comparative bioelectricity production from various wastewaters in MFCs using mixed cultures and a pure strain of Shewanella oneidensis, Bioresour. Technol., 104 (2012) 315–323.
  78. G. Velvizhi, S.V. Mohan, Biocatalyst behavior under selfinduced electrogenic microenvironment in comparison with anaerobic treatment: evaluation with pharmaceutical wastewater for multi-pollutant removal, Bioresour Technol., 102 (2011) 10784–10793.
  79. G. Mohanakrishna, S.K. Mohan, S.V. Mohan, Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: evaluation with real field wastewater, Appl. Energy, 95 (2012) 31–37.
  80. B. Cercado-Quezada, M.L. Delia, A. Bergel, Testing various food-industry wastes for electricity production in MFCs, Bioresour. Technol., 101 (2010) 2748–2754.
  81. A.L. Vázquez-Larios, O.S. Feria, H.M.P. Varaldo, M.T.P. Noyola, E.R. Leal, N.R. Seijas, Bioelectricity production from municipal leachate in a MFCs: effect of two cathodic catalysts, Int. J. Hydrogen Energy, 39 (2014) 16667–16675.
  82. D.R. Lovley, Powering microbes with electricity: direct electron transfer from electrodes to microbes, Environ. Microbiol. Rep., 3 (2011) 27–35.
  83. E. Abazarian, R. Gheshlaghi, M.A. Mahdavi, The effect of number and configuration of sediment MFCs on their performance in an open channel architecture, J. Power Sources, 325 (2016) 739–744.
  84. A.A. Carmona-Martínez, F. Harnisch, U. Kuhlicke, T.R. Neu, U. Schroder, Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential, Bioelectrochemistry, 93 (2013) 23–29.
  85. K.P. Nevin, B.C. Kim, R.H. Glaven, J.P. Johnson, T.L. Woodard, S.F. Covalla, A.E. Franks, A. Liu, D.R. Lovely, Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells, PLoS One, 4 (2009) 1–11, doi: 10.1371/journal.pone. 0005628.
  86. S. Kalathil, D. Pant, Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems, RSC Adv., 6 (2016) 30582–30597.
  87. K.L. Keller, B.J. Rapp-Giles, E.S. Semkiw, I. Porat, S.D. Brown, J.D. Wall, New model for electron flow for sulfate reduction in Desulfovibrio alaskensis G20, Appl. Environ. Microbiol., 80 (2014) 855–868.
  88. K.M. Leung, G. Wanger, M.Y. El-Naggar, Y. Gorby, G. Southam, W.M. Lau, Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior, Nano Lett., 13 (2013) 2407–2411.
  89. W. Miran, M. Nawaz, A. Kadam, S. Shin, J. Heo, J. jang, Microbial community structure in a dual chamber MFCs fed with brewery waste for azo dye degradation and electricity generation, Environ. Sci. Pollut. Res., 22 (2015) 13477–13485.
  90. A.Z. Alshehri, Formation of electrically conductive bacterial nanowires by Desulfuromonas acetoxidans in MFCs reactor, Int. J. Curr. Microbiol. Appl. Sci., 6 (2017) 1197–1211.
  91. C.M. Cordas, L.T. Guerra, C. Xavier, J.J.G. Moura, Electroactive biofilms of sulphate reducing bacteria, Electrochim. Acta, 54 (2008) 29–34.
  92. S. Bajracharya, A.T. Heijne, X.D. Benetton, K. Vanbroekhoven, C.J.N. Buisman, D. Pant, Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode, Bioresour. Technol., 195 (2015) 14–24.
  93. G. Pant, A. Singh, M. Panchpuri, R.G. Prasuna, K. Hossain, S.Z. Abbas, A. Ahmad, N. Ismail, M. Rafatullah, Enhancement of biosorption capacity of cyanobacterial strain to remediate heavy metals, Desal. Water Treat., 165 (2019) 244–252.
  94. A.E. Rotaru, P.M. Shrestha, F. Liu, M. Shrestha, D. Shrestha, K. Zengler, C. Wardman, K.P. Nevin, D.R. Lovley, A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane, Energy Environ. Sci., 7 (2014) 408–415.
  95. K. Tizaoui, B. Benguella, B. Makhoukhi, Selective adsorption of heavy metals (Co2+, Ni2+, and Cr3+) from aqueous solutions onto natural marine clay, Desal. Water Treat., 142 (2019) 252–259.
  96. J. Xionga, T. Zhaoa, H. Chengb, S. Lic, S. Wangd, G. Chend, The assessment on the heavy metal pollution and health risks in the Liujiang River under the Xijiang River region, Desal. Water Treat., 149 (2019) 315–322.
  97. A. Hashlamon, A. Ahmad, L.C. Hong, Pre-treatment methods for seawater desalination and industrial wastewater treatment: a brief review. Int. J. Sci. Res. Sci. Eng. Technol., 1 (2015) 422–428.
  98. C.S. Butler, P. Clauwaert, S.J. Green, W. Verstraete, R. Nerenberg, Bioelectrochemical perchlorate reduction in a MFCs, Environ. Sci. Technol., 44 (2010) 4685–4691.
  99. A.S. Mathuriya, J. Yakhmi, MFCs to recover heavy metals, Environ. Chem Lett., 12 (2014) 483–494.
  100. Z. Li, X. Zhang, L. Lei, Electricity production during the treatment of real electroplating wastewater containing Cr6+ using MFCs, Process Biochem., 43 (2008) 1352–1358.
  101. G. Wang, L. Huang, Y. Zhang, Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in MFCs, Biotechnol. Lett., 30 (2008) 19–59.
  102. Z. He, J. Kan, F. Mansfeld, L.T. Angenent, K.H. Nealson, Self-sustained phototrophic MFCs based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria, Environ. Sci. Technol., 43 (2009) 1648–1654.
  103. P. Singhvi, M. Chhabra, Simultaneous chromium removal and power generation using algal biomass in a dual chambered salt bridge MFCs, J. Bioremed. Biodegad., 4 (2013) 185–290.
  104. E.Y. Ryu, M. Kim, S.J. Lee, Characterization of MFCs enriched using Cr(VI)-containing sludge, J. Microbiol. Biotechnol., 21 (2011) 187–191.
  105. J.C. Varia, S.S. Martinez, S. Velasquez-Orta, S. Bull, Microbiological influence of metal ion electrodeposition: studies using graphite electrodes [AuCl
  106. − and Shewanella putrefaciens, Electrochim. Acta, 115 (2014) 344–351.
  107. D. Wu, L. Huang, X. Quan, G.L. Puma, Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in MFCs, J. Power Sources, 307 (2016) 705–714.
  108. C. Choi, Y. Cui, Recovery of silver from wastewater coupled with power generation using a MFCs, Bioresour. Technol., 107 (2012) 522–525.
  109. A.B. Holmes, F.X. Gu, Emerging nanomaterial for the applications of selenium removal for wastewater treatment, Environ. Sci. Nano, 3 (2016) 982–996.
  110. L. Huang, Y. Liu, L. Yu, X. Quan, G. Chen, A new clean approach for production of cobalt dihydroxide from aqueous Co(II) using oxygen-reducing biocathode MFCs, J. Cleaner Prod., 86 (2015) 441–446.
  111. M. Liang, H.C. Tao, S.F. Li, W. Li, L.J. Zhang, Treatment of Cu2+-containing wastewater by MFCs with excess sludge as anodic substrate, Huan Jing Ke Xue Huanjing Kexue, 32 (2011) 179–185.
  112. C. Abourached, T. Catal, H. Liu, Efficacy of single-chamber MFCs for removal of cadmium and zinc with simultaneous electricity production, Water Res., 51 (2014) 228–233.
  113. Y. Li, Y. Wu, S. Puranik, Y. Lei, T. Vadas, B. Li, Metals as electron acceptors in single-chamber MFCs, J. Power Sources, 269 (2014) 430–439.
  114. Y. Jiang, A.C. Ulrich, Y. Liu, Coupling bioelectricity generation and oil sands tailings treatment using MFCs, Bioresour. Technol., 139 (2013) 349–354.
  115. C. Choi, N. Hu, The modeling of gold recovery from tetrachloroaurate wastewater using a MFCs, Bioresour. Technol., 133 (2013) 589–598.
  116. V.M.O. Martinez, M.J.S. Garcia, A.P. de los Rios, F.J.H. Fernandez, J.A. Egea, L.J. Lozano, Development in MFCs, Chem. Eng. J., 271 (2015) 50–60.
  117. Q. Deng, X. Li, J. Zuo, A. Ling, B.E. Logan, Power generation using an activated carbon fiber felt cathode in an upflow MFCs, J. Power Sources, 195 (2010) 1130–1135.
  118. A.A. Yaqoob, K. Umar, M.N.M. Ibrahim, Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review, Appl. Nanosci., 13 (2020) 1–10.
  119. A.A. Yaqoob, K. Umar, Z. Ahmad, M.N.M. Ibrahim, A. Akil, S.A. Bhawani, Synthesis of Ag@polycarbazole nanocomposite using ferric acetate as an oxidant, Asian J. Chem., 5 (2020) 1069–1074.
  120. A. Kwiecińska, M. Kochel, K. Rychlewska, J. Figa, The use of ultrafiltration in enhancement of chemical coke oven wastewater treatment, Desal. Water Treat., 128 (2019) 24–221.
  121. S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C.M. Li, Chemically exfoliating biomass into a graphene‐like porous active carbon with rational pore structure, good conductivity, and large surface area for high‐performance supercapacitors, Adv. Energy Mater., 8 (2018) 25–45.
  122. O.N. Shornikova, E.V. Kogan, N.E. Sorokina, V. V. Avdeev, The specific surface area and porous structure of graphite materials, Russ. J. Phys. Chem. A, 83 (2009) 1022–1025.
  123. S. Hussain, S. Boland, A. Baeza-Squiban, R. Hamel, Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount, Toxicology, 260 (2009) 142–149.
  124. M.E. Birch, T.A. Ruda-Eberenz, M. Chai, R.L. Hatfield, R. Andrew, Properties that influence the specific surface areas of carbon nanotubes and nanofibers, Ann. Occup. Hyg., 57 (2013) 1148–1166.
  125. X.L. Zhou, T.S. Zhao, Y.K. Zeng, L. An, L. Wei, A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries, J. Power Sources, 329 (2016) 247–254.
  126. S.F. Zopf, M.J. Panzer, Integration of UV-cured Ionogel electrolyte with carbon paper electrodes, AIMS Mater Sci., 1 (2014) 59–69.
  127. P. Li, J.Y. Hwang, S.M. Park, Y.K. Sun, Superior lithium/ potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke, J. Mater. Chem. A, 6 (2018) 12551–12558.
  128. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, 347 (2015) 12–46.
  129. K. Dž, F. Korać, S. Gutić, Graphite, graphite oxide, graphene oxide, and reduced graphene oxide as active materials for electrochemical double layer capacitors: a comparative study, Bull. Chem. Technol. Bosnia Herzegovina, 45 (2015) 35–38.
  130. F. Zhang, T. Saito, S. Cheng, M.A. Hickner, B.E. Logan, MFCs cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors, Environ. Sci. Technol., 44 (2010) 1490–1495.
  131. A. Zurutuza, C. Marinelli, Challenges and opportunities in graphene commercialization, Nat. Nanotechnol., 9 (2014) 730–749.
  132. F. Meng, L. Gao, Y. Yan, J. Cao, N. Wang, T. Wang, T. Ma, Ultra-low-cost coal-based carbon electrodes with seamless interfacial contact for effective sandwich-structured perovskite solar cells, Carbon, 145 (2019) 290–296.
  133. M.F.L.D. Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications, Science, 339 (2013) 535–539.
  134. Y. Wang, Z. Liu, P. Hao, Investigation on mechanical and microwave heating characteristics of asphalt mastic using activated carbon powder as electro-magnetic absorbing materials, Constr. Build. Mater., 202 (2019) 692–703.
  135. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  136. Q. Wu, S. Jiao, M. Ma, S. Peng, MFCs system: a promising technology for pollutant removal and environmental remediation, Environ. Sci. Pollut. Res., 1 (2020) 1–6.
  137. R.L. Heydorn, C. Engel, R. Krull, K. Dohnt, Strategies for the targeted improvement of anodic electron transfer in MFCs, ChemBioEng Rev., 7 (2020) 4–17.
  138. V.S. Sarathi, K.S. Nahm, Recent advances and challenges in the anode architecture and their modifications for the applications of MFCs, Biosens. Bioelectron., 43 (2013) 461–475.
  139. L. Ezziat, A. Elabed, S. Ibnsouda, S. El-Abed, Challenges of microbial fuel cell architecture on heavy metal recovery and removal from wastewater, Front. Energy Res., 7 (2019) 1–10.
  140. V. Chaturvedi, P. Verma, Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity, Bioresour. Bioprocess., 3 (2016) 19–38.