References

  1. G. Böttger, Die Herausforderungen Nehmen Zu, WRP Report, 2019, pp. 52–63.
  2. A. Sumisha, G. Arthanareeswaran, Y.L. Thuyavan, A.F. Ismail, S. Chakraborty, Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes, Ecotoxicol. Environ. Saf., 121 (2015) 174–179.
  3. T. Cserháti, E. Forgács, G. Oros, Biological activity and environmental impact of anionic surfactants, Environ. Int., 28 (2002) 337–348.
  4. J. Haap, E. Classen, J. Beringer, S. Mecheels, J.S. Gutmann, Microplastic fibers released by textile laundry: a new analytical approach for the determination of fibers in effluents, Water, 11 (2019) 2088, doi: 10.3390/w11102088.
  5. R.A. Praechter, D. Tibbitts, A.J. Weber, U.S. Patent No. 6240585, U.S. Patent and Trademark Office, Washington, DC, 2001.
  6. H.C. Kim, X. Shang, J.H. Huang, B.A. Dempsey, Treating laundry waste water: cationic polymers for removal of contaminants and decreased fouling in microfiltration, J. Membr. Sci., 456 (2014) 167–174.
  7. F. Janpoor, A. Torabian, V. Khatibikamal, Treatment of laundry waste‐water by electrocoagulation, J. Chem. Technol. Biotechnol., 86 (2011) 1113–1120.
  8. T.P. Delforno, A.G.L. Moura, D.Y. Okada, I.K. Sakamoto, M.B.A. Varesche, Microbial diversity and the implications of sulfide levels in an anaerobic reactor used to remove an anionic surfactant from laundry wastewater, Bioresour. Technol., 192 (2015) 37–45.
  9. C.V.D. Faria, T.P. Delforno, D.Y. Okada, M.B.A. Varesche, Evaluation of anionic surfactant removal by anaerobic degradation of commercial laundry wastewater and domestic sewage, Environ. Technol., 40 (2019) 988–996.
  10. M. Munoz, P. Garcia-Muñoz, G. Pliego, Z.M. de Pedro, J.A. Zazo, J.A. Casas, J.J. Rodriguez, Application of intensified Fenton oxidation to the treatment of hospital wastewater: kinetics, ecotoxicity and disinfection, J. Environ. Chem. Eng., 4 (2016) 4107–4112.
  11. I. Ciabatti, F. Cesaro, L. Faralli, E. Fatarella, F. Tognotti, Demonstration of a treatment system for purification and reuse of laundry wastewater, Desalination, 245 (2019) 451–459.
  12. M.Y. Ashfaq, H. Qiblawey, Laundry Wastewater Treatment Using Ultrafiltration Under Different Operating Conditions, AIP Conference Proceedings, Vol. 2022, AIP Publishing LLC, Melville, NY, USA, 2018.
  13. C.T. Wang, W.L. Chou, Y.M. Kuo, Removal of COD from laundry wastewater by electrocoagulation/electroflotation, J. Hazard. Mater., 164 (2009) 81–86.
  14. C.O. Nascimento, M.T. Veit, S.M. Palácio, G.C. Gonçalves, M.R. Fagundes-Klen, Combined application of coagulation/flocculation/sedimentation and membrane separation for the treatment of laundry wastewater, Int. J. Chem. Eng., 2019 (2019) 8324710 13p, doi: 10.1155/2019/8324710.
  15. E. Haaz, D. Fozer, T. Nagy, N. Valentinyi, A. Andre, J. Matyasi, J. Balla, P. Mizsey, A.J. Toth, Vacuum evaporation and reverse osmosis treatment of process wastewaters containing surfactant material: COD reduction and water reuse, Clean Technol. Environ. Policy, 21 (2019) 861–870.
  16. T. Ramcharan, A. Bissessur, Treatment of laundry wastewater by biological and electrocoagulation methods, Water Sci. Technol., 75 (2017) 84–93.
  17. S. Šostar-Turk, I. Petrinić, M. Simonič, Laundry wastewater treatment using coagulation and membrane filtration, Resour. Conserv. Recycl., 44 (2005) 185–196.
  18. M.S. Dahanayake, M.E. Ventura, A. Nartey, Recovery and Reuse of Anionic Surfactants from Aqueous Solutions, U.S. Patent No. 5843317, U.S. Patent and Trademark Office, Washington, DC, 1998.
  19. D.D. Back, R.P. Scaringe, C. Ramos, N.A. Samad, S.D. Gann Sr., Process and System for Recycling and Reusing Gray Water, U.S. Patent No. 5868937, U.S. Patent and Trademark Office, Washington, DC, 1999.
  20. R.B. Engel, J.B. Gallo, D.H. Bladen, V.F. Engel, Laundry Waste Water Treatment and Wash Process, U.S. Patent No. 5097556, U.S. Patent and Trademark Office, Washington, DC, 1992.
  21. S. Fijan, R. Fijan, S. Šostar-Turk, Implementing sustainable laundering procedures for textiles in a commercial laundry and thus decreasing wastewater burden, J. Cleaner Prod., 16 (2008) 1258–1263.
  22. J.K. Braga, M.B.A. Varesche, Commercial laundry water characterisation, Am. J. Anal. Chem., 5 (2014) 8–16.
  23. K.N. Sheth, M. Patel, M.D. Desai, A study on characterization and treatment of laundry effluent, Int. J. Innovation Res. Sci. Technol., 4 (2017) 50–55.
  24. C. Zhao, J. Xue, F. Ran, S. Sun, Modification of polyethersulfone membranes–a review of methods, Prog. Mater. Sci., 58 (2013) 76–150.
  25. Y.H. La, B.D. McCloskey, R. Sooriyakumaran, A. Vora, B. Freeman, M. Nassar, J. Hedrick, A. Nelson, R. Allen, Bifunctional hydrogel coatings for water purification membranes: improved fouling resistance and antimicrobial activity, J. Membr. Sci., 372 (2011) 285–291.
  26. S.Y. Park, J.W. Chung, Y.K. Chae, S.Y. Kwak, Amphiphilic thiol functional linker mediated sustainable anti-biofouling ultrafiltration nanocomposite comprising a silver nanoparticles and poly(vinylidene fluoride) membrane, ACS Appl. Mater. Interfaces, 5 (2013) 10705–10714.
  27. M.C. Cruz, G. Ruano, M. Wolf, D. Hecker, E.C. Vidaurre, R. Schmittgens, V.B. Rajal, Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties, Chem. Eng. Res. Des., 94 (2015) 524–537.
  28. A. Damayanti, T.K. Sari, A.S Afifah, L.T. Sutikno, E. Sunarno, S. Soedjono, The performance operation of zeolite as membrane with using laundry waste water, J. Membr. Sci. Technol., 6 (2016) 1000148 1–4, doi: 10.4172/2155-9589.1000148.
  29. H. Zhu, J. Yuan, J. Zhao, G. Liu, W. Jin, Enhanced CO2/N2 separation performance by using dopamine/polyethyleneiminegrafted TiO2 nanoparticles filled PEBA mixed-matrix membranes, Sep. Purif. Technol., 214 (2019) 78–86.
  30. S. Saberi, A.A. Shamsabadi, M. Shahrooz, M. Sadeghi, M. Soroush, Improving the transport and antifouling properties of poly(vinyl chloride) hollow-fiber ultrafiltration membranes by incorporating silica nanoparticles, ACS Omega, 3 (2018) 17439–17446.
  31. M. Szwast, D. Polak, New membranes for industrial laundry wastewater treatment, Przem. Chem., 97 (2018) 439–441.
  32. D. Polak, K. Kucharska, M. Szwast, Membrany polipropylenowe modyfikowane kopolimerem PEBA w filtracji ścieków z pralni przemysłowych, Inż. Aparatura Chem., 3 (2017) 100–101.
  33. A. Razmjou, J. Mansouri, V. Chen, The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes, J. Membr. Sci., 378 (2011) 73–84.
  34. A. Rahimpour, M. Jahanshahi, B. Rajaeian, M. Rahimnejad, TiO2 entrapped nano-composite PVDF/SPES membranes: preparation, characterization, antifouling and antibacterial properties, Desalination, 278 (2011) 343–353.
  35. ISO 15797:2017 Textiles — Industrial Washing and Finishing Procedures for Testing of Workwear.
  36. Y. Kaya, C. Aydiner, H. Barlas, B. Keskinler, Nanofiltration of single and mixture solutions containing anionics and nonionic surfactants below their critical micelle concentrations (CMCs), J. Membr. Sci., 282 (2006) 401–412.