References
- Y. Bichsel, U. von Gunten, Formation of iodo-trihalomethanes
during disinfection and oxidation of iodide-containing waters,
Environ. Sci. Technol., 34 (2000) 2784–2791.
- Y. Bichsel, U. von Gunten, Oxidation of iodide and hypoiodous
acid in the disinfection of natural waters, Environ. Sci. Technol.,
33 (1999) 4040–4045.
- S.W. Krasner, H.S. Weinberg, S.D. Richardson, S.J. Pastor,
R. Chinn, M.J. Sclimenti, G.D. Onstad, A.D. Thruston,
Occurrence of a new generation of disinfection byproducts,
Environ. Sci. Technol., 40 (2006) 7175–7185.
- G. Hua, D.A. Reckhow, Comparison of disinfection byproduct
formation from chlorine and alternative disinfectants, Water
Res., 41 (2007) 1667–1678.
- S.D. Richardson, Environmental mass spectrometry: emerging
contaminants and current issues, Anal. Chem., 80 (2008)
4373–4402.
- S.D. Richardson, F. Fasano, J.J. Ellington, F.G. Crumley,
K.M. Buettner, J.J. Evans, B.C. Blount, L.K. Silva, T.J. Waite,
G.W. Luther, A.B. McKague, R.J. Miltner, E.D. Wagner,
M.J. Plewa, Occurrence and mammalian cell toxicity of
iodinated disinfection byproducts in drinking water, Environ.
Sci. Technol., 42 (2008) 8330–8338.
- D.B. Jones, A. Saglam, A. Triger, H. Song, T. Karanfil, I-THM
formation and speciation: preformed monochloramine versus
prechlorination followed by ammonia addition, Environ.
Sci. Technol., 45 (2011) 10429–10437.
- S.D. Richardson, New disinfection by-product issues: emerging
DBPs and alternative routes of exposure, Global NEST J.,
7 (2005) 43–60.
- B. Cancho, F. Ventura, M. Galceran, A. Diaz, S. Ricart,
Determination, synthesis and survey of iodinated
trihalomethanes in water treatment processes, Water Res.,
13 (2000) 3380–3390.
- T.Y. Zhang, B. Xu, C.Y. Hu, Y.L. Lin, L. Lin, T. Ye, F.X. Tian,
A comparison of iodinated trihalomethane formation from
chlorine, chlorine dioxide and potassium permanganate
oxidation processes, Water Res., 14 (2014) 0043–1354.
- C.E. Jones, L.J. Carpenter, Solar photolysis of CH2I2, CH2ICl,
and CH2IBr in water, saltwater, and seawater, and seawater,
Environ. Sci. Technol., 39 (2005) 6130–6137.
- J. Criquet, S. Allard, E. Salhi, C.A. Joll, A. Heitz, U. von Gunten,
Iodate and iodo-trihalomethane formation during chlorination
of iodide-containing waters: role of bromide, Environ. Sci.
Technol., 46 (2012) 7350–7357.
- S. Allard, J.W.A. Charrois, C.A. Joll, A. Heitz, Simultaneous
analysis of 10 trihalomethanes at nanogram per liter levels
in water using solid-phase microextraction and gas chromatography
mass-spectrometry, J. Chromatogr. A, 1238 (2012) 15–21.
- M.J. Farré, K. Doederer, W. Gernjak, Y. Poussade, H. Weinberg,
Disinfection by-products management in high quality recycled
water, Water Sci. Technol. Water Supply, 12 (2012) 573–579.
- K.M.S. Hansen, R. Zortea, A. Piketty, S.R. Vega, H.R. Andersen,
Photolytic removal of DBPs by medium pressure UV in
swimming pool water, Sci. Total Environ., 443 (2013) 850–856.
- Y. Xiao, R. Fan, L. Zhang, J. Yue, R.D. Webster, T. Lim,
Photodegradation of iodinated trihalomethanes in aqueous
solution by UV 254 irradiation, Water Res., 49 (2014) 275–285.
- Y. Xiao, L. Zhang, J. Yue, R.D. Webster, T. Lim, Kinetic modeling
and energy efficiency of UV/H2O2 treatment of iodinated
trihalomethanes, Water Res., 75 (2015) 259–269.
- T.C. Wang, C.K. Tan, M.C. Liou, Degradation of bromoform
and chlorodibromomethane in a catalyzed H2-water system,
Bull. Environ. Contam. Toxicol., 41 (1988) 563–568.
- C.S. Criddle, P.L. McCarty, Electrolytic model system for
reductive dehalogenation in aqueous environments, Environ.
Sci. Technol., 25 (1991) 973–978.
- L.J. Matheson, P.G. Tratnyek, Reductive dehalogenation of
chlorinated methanes by iron metal, Environ. Sci. Technol.,
28 (1994) 2045–2053.
- N.M. Marković, C.A. Lucas, H.A. Gasteiger, P.N. Ross, Bromide
adsorption on Pt(100): rotating ring-Pt(100) disk electrode and
surface X-ray scattering measurements, Surf. Sci., 365 (1996)
229–240.
- N. Sonoyama, T. Sakata, Electrochemical continuous decomposition
of chloroform and other volatile chlorinated hydrocarbons
in water using a column type metal impregnated carbon
fiber electrode, Environ. Sci. Technol., 33 (1999) 3438–3442.
- G.V. Korshin, M.D. Jensen, Electrochemical reduction
of haloacetic acids and exploration of their removal by
electrochemical treatment, Electrochim. Acta, 47 (2001) 747–751.
- D.E. Kimbrough, I.H. Suffet, Electrochemical removal of
bromide and reduction of THM formation potential in drinking
water, Water Res., 36 (2002) 4902–4906.
- N. Sonoyama, S. Seike, T. Sueoka, T. Sakata, Electrochemical
decomposition of ppb level trihalomethane in tap water,
J. Appl. Electrochem., 33 (2003) 1049–1055.
- J. Ghilane, M. Delamar, M. Guilloux-Viry, C. Lagrost,
C. Mangeney, and P. Hapiot, Indirect reduction of aryldiazonium
salts onto cathodically activated platinum surfaces:
formation of metal-organic structures, Langmuir, 21 (2005)
6422–6429.
- X. Li, D. Heryadi, A.A. Gewirth, Electroreduction activity
of hydrogen peroxide on Pt and Au electrodes, Langmuir,
21 (2005) 9251–9259.
- V.N. Trang, N.P. Dan, L.D. Phuong, B.X. Thanh, Pilot study
on the removal of TOC, THMs, and HAAs in drinking water
using ozone/UV-BAC, Desal. Water Treat., 52 (2014) 990–998.
- S. Tang, X. Wang, H. Yang, Y.F. Xie, Haloacetic acid removal by
sequential zero-valent iron reduction and biologically active
carbon degradation, Chemosphere, 90 (2013) 1563–1567.
- J. Radjenović, M.J. Farré, Y. Mu, W. Gernjak, J. Keller, Reductive
electrochemical remediation of emerging and regulated
disinfection byproducts, Water Res., 46 (2012) 1705–1714.
- L. Altamar, L. Fernández, C. Borras, J. Mostany, H. Carrero,
B. Scharifker, Electroreduction of chloroacetic acids (mono-,
di- and tri-) at polyNi(II)-tetrasulfonated phthalocyanine
gold modified electrode, Sens. Actuators, B, 146 (2010) 103–110.
- A. Li, X. Zhao, Y. Hou, H. Liu, L. Wu, J. Qu, The electrocatalytic
dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode, Appl. Catal., B, 111–112
(2012) 628–635.
- X. Zhao, A. Li, R. Mao, H. Liu, J. Qu, Electrochemical removal of
haloacetic acids in a three-dimensional electrochemical reactor
with Pd-GAC particles as fixed filler and Pd-modified carbon
paper as cathode, Water Res., 51 (2014) 134–143.
- T. Li, J. Farrell, Reductive dechlorination of trichloroethene
and carbon tetrachloride using iron and palladized-iron
cathodes, Environ. Sci. Technol., 34 (2000) 173–179.
- X. Wang, P. Ning, H. Liu, J. Ma, Dechlorination of chloroacetic
acids by Pd/Fe nanoparticles: effect of drying method on
metallic activity and the parameter optimization, Appl. Catal.,
B, 94 (2010) 55–63.
- S. Yuan, M. Tian, X. Lu, Electrokinetic movement of hexachlorobenzene
in clayed soils enhanced by Tween 80 and
β-cyclodextrin, J. Hazard. Mater., 137 (2006) 1218–1225.
- S. Yuan, X. Mao, and A.N. Alshawabkeh, Efficient degradation
of TCE in groundwater using Pd and electro-generated H2
and O2: a shift in pathway from hydrodechlorination to
oxidation in the presence of ferrous ions, Environ. Sci. Technol.,
46 (2012) 3398–3405.
- P.M.L. Bonin, P. Edwards, D. Bejan, C.C. Lo, N.J. Bunce,
A.D. Konstantinov, Catalytic and electrocatalytic hydrogenolysis
of brominated diphenyl ethers, Chemosphere, 58 (2005) 961–967.
- B.P. Chaplin, M. Reinhard, W.F. Schneider, C. Schüth,
J.R. Shapley, T.J. Strathmann, C.J. Werth, Response to comment
on “critical review of Pd-based catalytic treatment of priority
contaminants in water”, Environ. Sci. Technol., 46 (2012)
11469–11470.
- X. Wang, Q. Wu, H. Ma, C. Ma, Z. Yu, Y. Fu, X. Dong,
Fabrication of PbO2 tipped Co3O4 nanowires for efficient
photoelectrochemical decolorization of dye (reactive brilliant
blue KN-R) wastewater, Sol. Energy Mater. Sol. Cells, 191 (2019)
381–388.
- Q. Shen, Z. Chen, X. Huang, M. Liu, G. Zhao, High-yield and
selective photoelectrocatalytic reduction of CO2 to formate by
metallic copper decorated Co3O4 nanotube arrays, Environ.
Sci. Technol., 49 (2015) 5828–5835.
- I-F. Cheng, F. Quintus, K. Nic, Electrochemical dechlorination
of 4-chlorophenol to phenol, Environ. Sci. Technol., 31 (1997)
1074–1078.
- Y. Wu, L. Gan, S. Zhang, B. Jiang, H. Song, W. Li,
Y. Pan, A. Li, Enhanced electrocatalytic dechlorination of para-chloronitrobenzene
based on Ni/Pd foam electrode, Chem.
Eng. J., 316 (2017) 146–153.
- F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar,
Electrochemical advanced oxidation processes: a review on
their application to synthetic and real wastewaters, Appl.
Catal., B, 202 (2017) 217–261.
- W. Zhang, D. Xie, X. Li, W. Ye, X. Jiang, Y. Wang, W. Liang,
Electrocatalytic removal of humic acid using cobalt-modified
particle electrodes, Appl. Catal., A, 559 (2018) 75–84.
- J. Ma, M. Yan, A.M. Kuznetsov, A.N. Masliy, G. Ji, G.V. Korshin,
Rotating ring-disk electrode and quantum-chemical study
of the electrochemical reduction of monoiodoacetic acid and
iodoform, Environ. Sci. Technol., 49 (2015) 13542–13549.
- G. Ding, X. Zhang, A picture of polar iodinated disinfection
byproducts in drinking water by (UPLC/)ESI-tqMS, Environ.
Sci. Technol., 43 (2009) 9287–9293.
- M. Yang, X. Zhang, Comparative developmental toxicity of
new aromatic halogenated DBPs in a chlorinated saline sewage
effluent to the marine polychaete Platynereis dumerilii, Environ.
Sci. Technol., 47 (2013) 10868–10876.
- J. Liu, X. Zhang, Comparative toxicity of new halophenolic
DBPs in chlorinated saline wastewater effluents against a
marine alga: halophenolic DBPs are generally more toxic than
haloaliphatic ones, Water Res., 65 (2014) 64–72.
- J.A. Warner, W.H. Casey, R.A. Dahlgren, Interaction kinetics of
I2 (aq) with substituted phenols and humic substances, Environ.
Sci. Technol., 34 (2000) 3180–3185.