References
   -  A.M. Aboukarima, M.A. Al-Sulaiman, M.S.A. EI Marazky,
    Effect of sodium adsorption ratio and electric conductivity of
    the applied water on infiltration in a sandy-loam soil, Water SA,
    44 (2018) 105–110. 
-  I. Shainberg, J. Letey, Response of soils to sodic and saline
    conditions, Hilgardia, 52 (1984) 1–57. 
-  E.A. El-Morsy, M. Malik, J. Letey, Interactions between water
    quality and polymer treatment on infiltration rate and clay
    migration, Soil Technol., 4 (1991) 221–231. 
-  M.R. Emdad, R. Steven, R.J. Smith, H. Fardad, Effect of water
    quality on soil structure and infiltration under furrow irrigation,
    Irrig. Sci., 23 (2004) 55–60. 
-  B.B. Patel, R.S. Dave, Studies on the infiltration of salinealkali
    soils of several parts of Mehsana and Patan districts of
    North Gujarat, J. Appl. Technol. Environ. Sanitation, 1 (2011)
    87–92. 
-  D.Ö. Faruk, A hybrid neural network and ARIMA model for
    water quality time series prediction, Eng. Appl. Artif. Intell.,
    23 (2010) 586–594. 
-  A.W. Jayawardena, F. Lai, Time series analysis of water quality
    data in Pearl River, China, J. Environ. Eng., 115 (1989) 590–607. 
-  H. Sun, M. Koch, Case study: analysis and forecasting of salinity
    in Apalachicola Bay, Florida, using Box-Jenkins ARIMA models,
    J. Hydraul. Eng., 127 (2001) 718–727. 
-  G. Asadollahfardi, Analysis of surface water quality in Tehran,
    Water Qual. Res. J., 37 (2002) 489–511. 
-  A. Kurnc K. Yürekli, O. Cevik, Performance of two stochastic
    approaches for forecasting water quality and streamflow data
    from Yeşilιrmak River, Turkey, Environ. Modell. Software,
    20 (2005) 1195–1200. 
-  G. Asadollahfardi, M. Rahbar, M. Fatemiaghda, Application
    of time series models to predict water quality of upstream and
    downstream of the Latian Dam in Iran, Univ. J. Environ. Res.
    Technol., 2 (2012) 26–36. 
-  S.J. Abudu, P. King, Z. Sheng, Comparison of the performance
    of statistical models in forecasting monthly total dissolved
    solids in the Rio Grande, J. Am. Water Resour. Assoc.,
    48 (2012) 10–23. 
-  M. Ranjbar, M. Khaledian, Using ARIMA time series model in
    forecasting the trend of changes in qualitative parameters of
    Sefid-Rud River, Int. Res. J. Appl. Basic Sci., 8 (2014) 346–351. 
-  F.K. Arya, L. Zhang, Time series analysis of water quality
    parameters at Stillaguamish River using order series method,
    Stochastic Environ. Res. Risk Assess., 29 (2015) 227–239. 
-  M.H. Salmani, E. Salmani Jajaei, Forecasting models for flow
    and total dissolved solids in Karoun river-Iran, J. Hydrol.,
    535 (2016) 148–159. 
-  G. Asadollahfardi, A. Hemati, S. Moradinejad, R. Asadollahfardi,
    Sodium adsorption ratio (SAR) prediction of the Chalghazi
    river using artificial neural network (ANN) Iran, Curr. World
    Environ., 8 (2013) 169–178. 
-  A. Azad, H. Karami, S. Farzin, A. Saeedian, H. Kashi, F. Sayyahi,
    Prediction of water quality parameters using ANFIS optimized
    by intelligence algorithms (case study: Gorganrood River),
    KSCE J. Civ. Eng., 22 (2018) 2206–2213. 
-  M.T. Sattari, A. Farkhondeh, J. Patrick Abraham, Estimation of
    sodium adsorption ratio indicator using data mining methods:
    a case study in Urmia Lake basin, Iran, Environ. Sci. Pollut. Res.,
    25 (2018) 4776–4786. 
-  B. Singh, Prediction of the sodium absorption ratio using datadriven
    models: a case study in Iran, Geol. Ecol. Landscapes,
    4 (2020) 1–10. 
-  B.H.K. Al-Obaidi, B.H. Khudhair, R.S. Mahmood, R.A. Kadhim,
    Water quality assessment and sodium adsorption ratio
    prediction of Tigris River using artificial neural network, J. Eng.
    Sci. Technol., 15 (2000) 3055–3066. 
-  A. Aslanargun, M. Mammadov, B. Yazici, S. Yolacan,
    Comparison of ARIMA, neural networks and hybrid models in
    time series: tourist arrival forecasting, J. Stat. Comput. Simul.,
    77 (2007) 29–53. 
-  L.A. Dı´az-Robles, J.C. Ortega, J.S. Fu, G.D. Reed, J.C. Chow,
    J.G. Watson, J.A. Moncada-Herrera, A hybrid ARIMA and
    artificial neural networks model to forecast particulate matter
    in urban areas: the case of Temuco, Chile, Atmos. Environ.,
    42 (2008) 8331–8340. 
-  A.A. Yassen, Comparative Study of Artificial Neural Network
    and ARIMA Models for Economic Forecasting, Mater Thesis,
    Al-Azhar University, Gaza, 2011. 
-  A.A. Adebiyi, A.O. Adewumi, C.K. Ayo, Comparison of ARIMA
    and artificial neural networks models for stock price prediction,
    J. Appl. Math., 1 (2014) 1–7. 
-  D.E. Ighravwea, C.O. Anyaeche, A comparison of ARIMA and
    ANN techniques in predicting port productivity and berth
    effectiveness, Int. J. Data Network Sci., 3 (2019) 13–22. 
-  Z. Li, Y. Li, A comparative study on the prediction of the BP
    artificial neural network model and the ARIMA model in the
    incidence of AIDS, BMC Med. Inf. Decis. Making, 143 (2020)
    1–13. 
-  G. Asadollahfardi, H. Zangooi, M. Asadi, M. Tayebi Jebeli,
    A. Meshkat-Dini, N. Roohani. Comparison of Box–Jenkins
    time series and ANN in predicting total dissolved solid at the
    Zāyandé-Rūd River, Iran, J. Water Supply Res. Technol. AQUA,
    67(2018) 673–684. 
-  G. Asadollahfardi, N. Heidarzadeh, A. Sekhavati, M. Asadi,
    Optimization of water quality monitoring stations using
    dynamic programming approach, a case study of the Mond
    Basin Rivers, Iran, Environ. Dev. Sustainability, 23 (2021)
    2867–2881, doi: 10.1007/s10668–020–00693–2. 
-  E. Rahnama, O. Bazrafshan, G. Asadollahfardi, Application
    of data-driven methods to predict the sodium adsorption rate
    (SAR) in different climate in Iran, Arabian J. Geosci., 13 (2020),
    doi: 10.1007/s12517–020–06146–4. 
-  G.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and
    Control, 5th ed., Holden Day, San, Francisco, 1976. 
-  W. Wu, G.C. Dandy, H.R. Maier, Protocol for developing ANN
    models and its application to the assessment of the quality
    of the ANN model development process in drinking water
    quality modelling, Environ. Modell. Software, 54 (2014) 108–127. 
-  H.R. Maier, A. Jain, G.C. Dandy, K.P. Sudheer, Methods used for
    the development of neural networks for the prediction of water
    resource variables in river systems: current status and future
    directions, Environ. Modell. Software, 25 (2010) 891–909. 
-  M. Cakmakci, Adaptive neuro-fuzzy modelling of anaerobic
    digestion of primary sedimentation sludge, Bioprocess Biosyst.
    Eng., 30 (2007) 349–357. 
-  H. Abu Qdais, K. Bani Hani, N. Shatnawi, Modeling and
    optimization of biogas production from a waste digester
    using artificial neural network and genetic algorithm, Resour.
    Conserv. Recyl., 54 (2010) 359–363. 
-  G. Asadollahfardi, A. Taklify, A. Ghanbari, Application of
    artificial neural network to predict TDS in Talkheh Rud River,
    J. Irrig. Drain. Eng., 138 (2012) 363–370. 
-  T. Beltramo, C. Ranzan, J. Hinrichs, B. Hitzmann, Artificial
    neural network prediction of the biogas flow rate optimised
    with an ant colony algorithm, Biosyst. Eng., 143 (2016) 68–78. 
-  B. Najafi, S. Faizollahzadeh Ardabili, Application of ANFIS,
    ANN, and logistic methods in estimating biogas production
    from spent mushroom compost (SMC), Resour. Conserv.
    Recycl., 133 (2018) 169–178. 
-  C.W. Dawson, R.L. Wilby, Hydrological modelling using
    artificial neural networks, Prog. Phys. Geogr., 25 (2001) 80–108. 
-  T. Kohonen, Self-Organization and Associative Memory,
    Springer, New York, NY, Berlin, Heidelberg, 1984. 
-  X.M. Song, Radial Basis Function Networks for Empirical
    Modeling of Chemical Process, MSc Thesis, University of
    Helsinki, 1996. 
-  P.L. Narasimha, W.H. Delashmit, M.T. Manry, J. Li, F. Maldonado,
    An integrated growing-pruning method for feedforward
    network training, Neurocomputing, 71 (2008) 2831–2847. 
-  S. Chen, S.A. Billings, W. Luo, Orthogonal least squares methods
    and their application to nonlinear system identification, Int. J.
    Control, 50 (1989) 1873–1896. 
-  S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares
    learning algorithm for radial basis function networks, IEEE
    Trans. Neural Networks, 2 (1991) 302–309. 
-  C.J. Willmott, K. Matsuura, Advantages of the mean absolute
    error (MAE) over the root mean square error (RMSE) in
    assessing average model performance, Clim. Res., 30 (2005)
    79–82. 
-  P. Krause, D.P. Boyle, F. Bäse, Comparison of different efficiency
    criteria for hydrological model assessment, Adv. Geosci.,
    5 (2005) 89–97. 
-  J.E. Nash, J.V. Sutcliffe, River flow forecasting through
    conceptual models’ part I—a discussion of principles, J. Hydrol.,
	  10 (1970) 282–290.