References

  1. Available at: https://www.who.int/news-room/fact-sheets/ detail/drinking-water (accessed March 12, 2021).
  2. H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C.O. Bezerra, R. Bergamasco, Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review, Chemosphere, 222 (2019) 766–780.
  3. N. Jalal, A.R. Surendranath, J.L. Pathak, S. Yu, C.Y. Chung, Bisphenol A (BPA) the mighty and the mutagenic, Toxicol. Rep., 5 (2018) 76–84.
  4. R. Gerona, F.S. Vom Saal, P.A. Hunt, BPA: have flawed analytical techniques compromised risk assessments, Lancet Diabetes Endocrinol., 8 (2019) 11–13.
  5. S. Almeida, A. Raposo, M.A. González, C. Carrascosa, Bisphenol A: food exposure and impact on human health, Compr. Rev. Food Sci. Food Saf., 17 (2018) 1503–1517.
  6. Y. Ma, H. Liu, J. Wu, L. Yuan, Y. Wang, X. Du, R. Wang, P.W. Marwa, P. Petlulu, X. Chen, H. Zhang, The adverse health effects of bisphenol A and related toxicity mechanisms, Environ. Res., 176 (2019) 1–17.
  7. K.J. Choi, S.G. Kim, C.W. Kim, J.K. Park, Removal efficiencies of endocrine disrupting chemicals by coagulation/flocculation, ozonation, powdered/granular activated carbon adsorption, and chlorination, Korean J. Chem. Eng., 23 (2006) 399–408.
  8. H. Wang, Z.H. Liu, J. Zhang, R.P. Huang, H. Yin, Z. Dang, P.X. Wu, Y. Liu, Insights into the removal mechanisms of bisphenol A and its analogues in municipal wastewater treatment plants, Sci. Total Environ., 692 (2019) 107–116.
  9. M.A. Al-Ghouti, D. Da’ana, M.A. Dieyeh, M. Khraisheh, Adsorptive removal of mercury from water by adsorbents derived from date pits, Sci. Rep., 9 (2019) 1–15.
  10. J. Saleem, U.B. Shahid, M. Hijab, H. Mackey, G. McKay, Production and applications of activated carbons as adsorbents from olive stones, Biomass Convers. Biorefin., 9 (2019) 775–802.
  11. A.C. Arampatzidou, E.A. Deliyanni, Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A, J. Colloid Interface Sci., 466 (2016) 101–112.
  12. G. Liu, J. Ma, X. Li, Q. Qin, Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J. Hazard. Mater., 164 (2009) 1275–1280.
  13. C.E. Choong, S. Ibrahim, Y. Yoon, M. Jang, Removal of lead and bisphenol A using magnesium silicate impregnated palmshell waste powdered activated carbon: comparative studies on single and binary pollutant adsorption, Ecotoxicol. Environ. Saf., 148 (2018) 142–151.
  14. F. Tirgir, M.R. Sabzalian, G. Moghadam, Fabrication and DFT structure calculations of novel biodegradable diphenolic monomer containing D-4-hydroxyphenylglycine moiety as biologically active substituent: compression with toxic industrial bisphenol-A, Des. Monomers Polym., 18 (2015) 401–412.
  15. J. Huang, C. He, X. Li, G. Pan, H. Tong, Theoretical studies on thermal degradation reaction mechanism of model compound of bisphenol A polycarbonate, Waste Manage., 71 (2018) 181–191.
  16. A. Motta, F.P. La Mantia, L. Ascione, M.C. Mistretta, Theoretical study on the decomposition mechanism of bisphenol A polycarbonate induced by the combined effect of humidity and UV irradiation, J. Mol. Graphics Modell., 99 (2020) 107622 (1–4), doi: 10.1016/j.jmgm.2020.107622.
  17. F. Dai, X. Fan, G.R. Stratton, C.L. Bellona, T.M. Holsen, B.S. Crimmins, X. Xia, S.M. Thagard, Experimental and density functional theoretical study of the effects of Fenton’s reaction on the degradation of Bisphenol A in a high voltage plasma reactor, J. Hazard. Mater., 308 (2016) 419–429.
  18. J. Contreras-Garcia, E.R. Johnson, S. Keinan, R. Chaudret, J.P. Piquemal, D.N. Beratan, W. Yang, NCIPLOT: a program for plotting noncovalent interaction regions, J. Chem. Theory Comput., 7 (2011) 625–632.
  19. E. García-Hernández, L. Palomino-Asencio, R. Catarino- Centeno, J. Nochebuena, D. Cortés-Arriagada, E. Chigo- Anota, In silico study of the adsorption of acetamiprid on functionalized carbon nanocones, Physica E, 128 (2020) 114516 (1–8), doi: 10.1016/j.physe.2020.114516.
  20. W.T. Tsai, H.C. Hsu, T.Y. Su, K.Y. Lin, C.M. Lin, Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite, J. Colloid Interface Sci., 299 (2006) 513–519.
  21. F.M. Elshaer, A.A.S. Walid, A.B. Sayed, Histopathological changes in the kidney of mosquito fish, Gambusia affinis and guppy fish, Poecilia reticulata exposed to Bisphenol A, Egypt J. Aquat. Biol. Fish, 17 (2013) 83–93.
  22. A. Shareef, M.J. Angove, J.D. Wells, B.B. Johnson, Aqueous solubilities of estrone, 17β-estradiol, 17α-ethynylestradiol, and bisphenol A, J. Chem. Eng. Data, 51 (2006) 879–881.
  23. L. Patrolecco, S. Capri, S. Angelis, S. Polesello, S. Valsecchi, Determination of endocrine disrupting chemicals in environmental solid matrices by extraction with a non-ionic surfactant (Tween 80), J. Chromatogr. A, 1022 (2004) 1–7.
  24. W. Wang, C. Jiang, L. Zhu, N. Liang, X. Liu, J. Jia, C. Zhang, S. Zhai, B. Zhang, Adsorption of bisphenol A to a carbon nanotube reduced its endocrine disrupting effect in mice male offspring, Int. J. Mol. Sci., 15 (2014) 15981–15993.
  25. G. Vijayakumar, R. Tamilarasan, M. Dharmendirakumar, Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite, J. Mater. Environ. Sci., 3 (2012) 157–170.
  26. M. Nasrollahzadeh, F. Babaei, P. Fakhri, B. Jaleh, Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites, RSC Adv., 5 (2015) 10782–10789.
  27. T.J. Bandosz, Activated Carbon Surfaces in Environmental Remediation, Academic Press, United States - Cambridge - Massachusetts, 2006.
  28. T.D. Kühne, M. Krack, M. Parrinello, Static and dynamical properties of liquid water from first principles by a novel Car−Parrinello-like approach, J. Chem. Theory Comput., 5 (2009) 235–241.
  29. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996) 3865–3868.
  30. A. Dal Corso, Pseudopotentials periodic table: from H to Pu, Comput. Mater. Sci., 95 (2014) 337–350.
  31. S. Grimme, Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed., 47 (2008) 3430–3434.
  32. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Mater., 21 (2009) 395502 (1–19), doi: 10.1088/0953–8984/21/39/395502.
  33. E.R. Johnson, S. Keinan, P.M. Sánchez, J.C. García, A.J. Cohen, W. Yang, Revealing non-covalent interactions, J. Am. Chem. Soc., 132 (2010) 6498–6506.
  34. H.N. Tran, S.J. You, A. Hosseini-Bandegharaei, H.P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  35. X. Xiao, R. Hao, M. Liang, X. Zuo, J. Nan, L. Li, W. Zhang, Onepot solvothermal synthesis of three-dimensional (3D) BiOI/ BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A, J. Hazard. Mater., 233–234 (2012) 122–130.
  36. L. Zhao, X. Cao, W. Zheng, Q. Wang, F. Yang, Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar, Chemosphere, 136 (2015) 133–139.
  37. F. Liu, Y. Dai, S. Zhang, J. Li, C. Zhao, Y. Wang, C. Liu, J. Sun, Modification and application of mesoporous carbon adsorbent for removal of endocrine disruptor bisphenol A in aqueous solutions, J. Mater. Sci., 53 (2017) 2337–2350.
  38. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  39. C.T. Hsieh, H. Teng, Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions, Carbon, 38 (2000) 863–869.
  40. J. Goscianska, M. Marciniak, R. Pietrzak, Ordered mesoporous carbons modified with cerium as effective adsorbents for azo dyes removal, Sep. Purif. Technol., 154 (2015) 236–245.
  41. I. Bautista-Toledo, M.A. Ferro-García, J. Rivera-Utrilla, C. Moreno-Castilla, F.J.V. Fernández, Bisphenol-A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry, Environ. Sci. Technol., 39 (2005) 6246–6250.
  42. D.J.K. Robert Silverstein, F.X. Webster, Spectrometric Identification of Organic Compounds, 7th ed., Wiley, United States - Hoboken - New Jersey, 2005.
  43. R.D. Kumar, G.K. Kannan, K. Kadirvelu, Populus tree wood: a noble bioresource from western Himalayas for the development of various carbon types for the effective application in environment protection, i.e., phenol adsorption from wastewater, J. Biorem. Biodegrad., 8 (2017) 1–11.
  44. H. Tang, M. Wang, T. Lu, L. Pan, Porous carbon spheres as anode materials for sodium-ion batteries with high capacity and long cycling life, Ceram. Int., 43 (2017) 4475–4482.
  45. M.A.A. Junior, J.T. Matsushima, M.C. Rezende, E.S. Gonçalves, J.S. Marcuzzo, M.R. Baldan, Production and characterization of activated carbon fiber from textile PAN fiber, J. Aerosp. Technol. Manage., 9 (2017) 423–430.
  46. S. Schimmelpfennig, B. Glaser, One step forward toward characterization: some important material properties to distinguish biochars, J. Environ. Qual., 41 (2011) 1–13.
  47. J. Valença, P.R. Olivato, D.N. Rodrigues, P.R. Batista, L.C. Ducati, M. Dal Colle, Conformational analysis and electronic interactions of some 2-[2′-(4′-sustituted-phenylsulfanyl)- acetyl]-5-substituted furans and 2-[2′-(phenylselanyl)-acetyl]-5-methylfuran, J. Mol. Struct., 1225 (2021) 129088 (1–15), doi: 10.1016/j.molstruc.2020.129088.
  48. S. Jafari, B. Yahyaei, E.K. Nejman, M. Sillanpää, The influence of carbonization temperature on the modification of TiO2 in the removal of methyl orange from aqueous solution by adsorption, Desal. Water Treat., 57 (2016) 18825–18835.
  49. R. Wirasnita, T. Hadibarata, A.R.M. Yusoff, Z. Yusop, Removal of bisphenol A from aqueous solution by activated carbon derived from oil palm empty fruit bunch, Water Air Soil Pollut., 225 (2014) 1–12.
  50. C.R.A. Machado, E.M. Saggioro, Y.G.L. Silva, L.P.S. Pereira, J.C. Campos, Avaliação da adsorção de fenol e bisfenol A em carvões ativados comerciais de diferentes matrizes carbonáceas, Rev. Ambient. Água, 10 (2015) 915–927.
  51. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  52. Y. Dong, D. Wu, X. Chen, Y. Lin, Adsorption of bisphenol A from water by surfactant-modified zeolite, J. Colloid Interface Sci., 348 (2010) 585–590.
  53. J. Xu, L. Wang, Y. Zhu, Decontamination of bisphenol A from aqueous solution by graphene adsorption, Langmuir, 28 (2012) 8418–8425.
  54. A.O. Ifelebuegu, J.E. Ukpebor, C.C. Obidiegwu, B.C. Kwofi, Comparative potential of black tea leaves waste to granular activated carbon in adsorption of endocrine disrupting compounds from aqueous solution, Global J. Environ. Sci. Manage., 1 (2015) 205–214.
  55. P.N. Diagboya, B.I. Olu-Owolabi, K.O. Adebowale, Microscale scavenging of pentachlorophenol in water using amine and tripolyphosphate-grafted SBA-15 silica: batch and modeling studies, J. Environ. Manage., 146 (2014) 42–49.
  56. B.I. Olu-Owolabi, P.N. Diagboya, K.O. Adebowale, Evaluation of pyrene sorption-desorption on tropical soils, J. Environ. Manage., 137 (2014) 1–9.
  57. K.G. Akpomie, F.A. Dawodu, K.O. Adebowale, Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential, Alexandria Eng. J., 54 (2015) 757–767.
  58. A.A. Alghamdi, A.B. Al-Odayni, W.S. Saeed, A. Al-Kahtani, F.A. Alharthi, T. Aouak, Efficient adsorption of Lead(II) from aqueous phase solutions using polypyrrole-based activated carbon, Materials, 12 (2019) 1–16.
  59. N.A.A. Nazri, R.S. Azis, H.C. Man, A.H. Shaari, N.M. Saiden, I. Ismail, Equilibrium studies and dynamic behaviour of cadmium adsorption by magnetite nanoparticles extracted from mill scales waste, Desal. Water Treat., 171 (2019) 115–131.
  60. W.T. Tsai, C.W. Lai, T.Y. Su, Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents, J. Hazard. Mater., 134 (2006) 169–175.
  61. M.A.S.D. Barros, P.A. Arroyo, E.A. Silva, General Aspects of Aqueous Sorption Process in Fixed Beds, H. Nakajima, Ed., Advances in Sustainable Energy and Environment Oriented Numerical Modeling, Intech, 2013, pp. 361–386. Available at: https://www.intechopen.com/books/masstransfer- advances-in-sustainable-energy-and-environmentoriented- numerical-modeling/general-aspects-of-aqueoussorption- process-in-fixed-beds
  62. N. Özbay, A.S. Yargiç, R.Z. Yarbay-Sahin, E. Önal, Full factorial experimental design analysis of reactive dye removal by carbon adsorption, J. Chem., 2013 (2013) 1–13.
  63. S. Rangabhashiyam, N. Anu, G. Nangagopal, N. Selvaraju, A novel approach of the modified BET isotherm towards continuous column study, J. Sci. Ind. Res., 73 (2014) 489–494.
  64. Z. Gong, S. Li, J. Ma, X. Zhang, Synthesis of recyclable powdered activated carbon with temperature responsive polymer for bisphenol A removal, Sep. Purif. Technol., 157 (2016) 131–140.
  65. S. Bele, V. Samanidou, E. Deliyanni, Effect of the reduction degree of graphene oxide on the adsorption of bisphenol A, Chem. Eng. Res. Des., 109 (2016) 573–585.
  66. T. Phatthanakittiphong, G.T. Seo, Characteristic evaluation of graphene oxide for bisphenol A adsorption in aqueous solution, Nanomaterials, 128 (2016) 1–17.
  67. Í.F.T. Souza, D.F.S. Petri, β-cyclodextrin hydroxypropyl methylcellulose hydrogels for bisphenol A adsorption, J. Mol. Liq., 266 (2018) 640–648.
  68. F. Wang, X. Lu, W. Peng, Y. Deng, T. Zhang, Y. Hu, X.Y. Li, Sorption behavior of bisphenol A and triclosan by graphene: comparison with activated carbon, ACS Omega, 2 (2017) 5378–5384.