References

  1. G.H. Chen, G.A. Ekama, M.C.M. van Loosdrecht, D. Brdjanovic, Eds., Biological Wastewater Treatment: Principles, Modeling and Design, IWA Publishing, Printed by: Cambridge University Press, 12 Caxton Street, London SW1H 0QS, UK, 2020.
  2. Y. Zhu, Y. Zhang, H.-Q. Ren, J.-J. Geng, K. Xu, H. Huang, L.-L. Ding, Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor, Bioresour. Technol., 180 (2015) 345–351.
  3. L. Dvorák, T. Lederer, V. Jirků, J. Masák, L. Novák, Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor, Process Biochem., 49 (2014) 102–109.
  4. Y. Rahimi, A. Torabian, N. Mehrdadi, M. Habibi-Rezaie, H. Pezeshk, G.-R. Nabi-Bidhendi, Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor, J. Hazard. Mater., 186 (2011) 1097–1102.
  5. W. Guo, H.-H. Ngo, F. Dharmawan, C.G. Palmer, Roles of polyurethane foam in aerobic moving and fixed bed bioreactors, Bioresour. Technol., 101 (2010) 1435–1439.
  6. Y. Luo, Q. Jiang, H.H. Ngo, L.D. Nghiem, F.I. Hai, E.W. Price, J. Wang, W. Guo, Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor–membrane bioreactor system, Bioresour. Technol., 191 (2015) 355–359.
  7. Y. Shao, Y. Shi, A. Mohammed, Y. Liu, Wastewater ammonia removal using an integrated fixed-film activated sludgesequencing batch biofilm reactor (IFAS-ISBR): comparison of suspended flocs attached biofilm, Int. Biodeterior. Biodegrad., 116 (2017) 38–47.
  8. P. Chatterjee, M.M. Ghangrekar, R. Surampalli, Organic matter and nitrogen removal in a hybrid upflow anaerobic sludge blanket—moving bed biofilm and rope bed biofilm reactor, J. Environ. Chem. Eng., 4 (2016) 3240–3245.
  9. A. Tawfik, F. El-Gohary, H. Temmink, Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor, Bioprocess. Biosyst. Eng., 33 (2010) 267–276.
  10. Z.U. Khan, I. Naz, A. Rehman, M. Rafiq, N. Ali, S. Ahmed, Performance efficiency of an integrated stone media fixed biofilm reactor and sand filter for sewage treatment, Desal. Water Treat., 54 (2015) 2638–2647.
  11. G. Andreottola, P. Foladori, M. Ragazzi, Upgrading of a small wastewater treatment plant in a cold climate region using a moving bed biofilm reactor (MBBR) system, Water Sci. Technol., 41 (2000) 177–185.
  12. J. Jaafari, M. Seyedsalehi, G.H. Safari, M. Ebrahimi Arjestan, H. Barzanouni, S. Ghadimi, H. Kamani, P. Haratipour, Simultaneous biological organic matter and nutrient removal in an anaerobic/anoxic/oxic (A2O) moving bed biofilm reactor (MBBR) integrated system, Int. J. Environ. Sci. Technol., 14 (2017) 291–304.
  13. J. Jaafari, A.B. Javid, H. Barzanouni, A. Younesi, N. Amir, A. Farahani, M. Mousazadeh, P. Soleimani, Performance of modified one-stage Phoredox reactor with hydraulic up-flow in biological removal of phosphorus from municipal wastewater, Desal. Water Treat., 171 (2019) 216–222.
  14. M. Mannacharaju, P. Natarajan, A.K. Villalan, M. Jothieswari, S. Somasundaram, S. Ganesan, An innovative approach to minimize excess sludge production in sewage treatment using integrated bioreactors, J. Environ. Sci., 67 (2017) 67–77.
  15. H. Ødegaard, B. Rusten, J. Siljudalen, The Development of the Moving Bed Biofilm Process—From Idea to Commercial Product, Proceedings of WEC/EWPCA/IWEM Specialty Conference, Innovations 2000, Cambridge, UK, 1998.
  16. H. Ødegaard, B. Gisvold, J. Strickland, The influence of carrier size and shape in the moving bed biofilm process, Water Sci. Technol., 41 (2000) 383–392.
  17. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, DC, USA, 2005.
  18. X.-b. Hu, K. Xu, Z. Wang, L.-l. Ding, H.-q. Ren, Characteristics of biofilm attaching to carriers in moving bed biofilm reactor used to treat vitamin C wastewater, Scanning, 35 (2013) 283–291.
  19. Y. Dong, S.-Q. Fan, Y. Shen, J.-X. Yang, P. Yan, Y.-P. Chen, J. Li, J.-S. Guo, X.-M. Duan, F. Fang, S.-Y. Liu, A novel biocarrier fabricated using 3D printing technique for wastewater treatment, Sci. Rep., 5 (2015) 1–10, doi: 10.1038/srep12400.
  20. L. Kriklavova, T. Lederer, The use of nanofiber carriers in biofilm reactor for the treatment of industrial wastewaters, Olomouc, 12 (2010) 1–6.
  21. W.G. Characklis, M.G. Trulear, J.D. Bryers, N. Zelver, Dynamics of biofilm processes: methods, Water Res., 16 (1982) 1207–1216.
  22. D.W. Garny, Z.D. Wen, B. Li, H. Liang, Sloughing and limited substrate conditions trigger filamentous growth in heterotrophic biofilms—measurements in flow-through tube reactor, Chem. Eng. Sci., 64 (2009) 2723–2732.
  23. Y. Abe, P. Polyakov, S. Skali-Lami, G. Francius, Elasticity and physico-chemical properties during drinking water biofilm formation, Biofouling, 27 (2011) 739–750.
  24. J. Xu, P. Wang, Y. Li, L. Niu, Z. Xing, Shifts in the microbial community of activated sludge with different COD/N ratios or dissolved oxygen levels in Tibet, China, Sustainability, 11 (2019) 2284, doi: 10.3390/su11082284.
  25. M. Duncan, N. Horan, Handbook of Water and Wastewater Microbiology, Elsevier Publishers, An Imprint of Elsevier, 84 Theobald’s Road, London WC1X 8RR, UK, 2003, pp. 25–30.
  26. N.K. Singh, A. Bhatia, A.A. Kazmi, Effect of intermittent aeration strategies on treatment performance and microbial community of an IFAS reactor treating municipal wastewater, Environ. Technol., 38 (2017) 2866–2876.
  27. M. Salazar, Application and importance of microalgae in wastewater treatment, Laboratory of Environmental Microbiology and Wastewater Treatment, Contactos, 59 (2005) 64–70.
  28. A.H. Javid, A.H. Hassani, B. Ghanbari, K. Yaghmaeian, Feasibility of utilizing moving bed biofilm reactor to upgrade and retrofit municipal wastewater treatment plants, Int. J. Environ. Res., 7 (2013) 963–972.
  29. A.K. Mungray, K. Patel, Coliforms removal in two UASB + ASP based systems, Int. Biodeterior. Biodegrad., 65 (2011) 23–28.
  30. USEPA, Guidelines for Water Reuse, U.S. Environmental Protection Agency and U.S. Agency for International Development, Washington, DC, EPA-625/R04–108, 2004.
  31. Z.Z. Yang, Z.M. Yang, J.G. Cao, Y.Y. Jia, J.X. Xu, Study on the combination of fixed bed and moving bed biofilm reactor for papermaking terminal wastewater treatment, Adv. Mater. Res., 777 (2013) 309–313.
  32. A. Aygun, B. Nas, A. Berktay, Influence of high organic loading rates on COD removal and sludge production in moving bed biofilm reactor, Environ. Eng. Sci., 25 (2008) 1311–1316.
  33. B. Ma, S. Wang, G. Zhu, S. Ge, J. Wang, N. Ren, Y. Peng, Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies, Front. Environ. Sci. Eng., 7 (2013) 267–272.
  34. S.-Q. Ni, J.-Y. Ni, D.-L. Hu, S. Sung, Effect of organic matter on the performance of granular anammox process, Bioresour. Technol., 110 (2012) 701–705.
  35. C. Dale, M. Laliberte, D. Oliphant, M. Ekenberg, Wastewater Treatment Using MBBR in Cold Climates, Proceedings of Mine Water Solutions in Extreme Environments, InfoMine, Vancouver, Canada, April 12–15, 2015.
  36. R. Peñafiel, C. Moreno, V. Ochoa-Herrera, Removal of nitrogen and organic pollution from pre-treated industrial wastewater in anaerobic lagoons using a sand biofilter, ACI Avances en ciencias e ingenierías, 8 (2016) 63–74.
  37. J.H. Guo, Q. Yan, Y.Z. Peng, A. Yang, S. Wang, Biological nitrogen removal with real-time control using step-feed SBR technology, Enzyme Microb. Technol., 40 (2007) 1564–1569.
  38. J. Ma, Y.Z. Peng, S.Y. Wang, L. Wang, Y. Liu, N.P. Ma, Denitrifying phosphorus removal in a step-feed CAST with alternating anoxic-oxic operational strategy, J. Environ. Sci., 21 (2009) 1169–1174.
  39. P.A. Wilderer, P. Arnz, E. Arnold, Application of biofilms and biofilm support materials as a temporary sink and source, Water Air Soil Pollut., 123 (2000) 147–158.
  40. R.M. Ramos, P.J.F. Muñoz, M.J.C. Saldarriaga, Effect of anaerobic-oxic-anoxic-anoxic (OAA) sequence on the removal of organic matter, phosphorus, and nitrogen in a modified laboratory scale SBR, Ingeniare. Rev. Chil., 25 (2016) 477–491.
  41. J. Palma, J. Manga, Simulation of a batch activated sludge (SBR) system for the treatment of wastewater with high nitrogen content, Ingeniería & Desarrollo, 18 (2005) 61–71.
  42. Z.X. Peng, Y.Z. Peng, L.J. Gui, X.L. Liu, Competition for single carbon source between denitrification and phosphorus release in sludge under anoxic condition, Chin. J. Chem. Eng., 18 (2010) 472–477.
  43. X.J. Wang, S.Q. Xia, L. Chen, J.F. Zhao, N.J. Renault, J.M. Chovelon, Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor, Process Biochem., 41 (2006) 824–828.
  44. A. Moawad, U.F. Mahmoud, M.A. El-Khateeb, E. El-Molla, Coupling of sequencing batch reactor and UASB reactor for domestic wastewater treatment. Desalination, 242 (2009) 325–335.