References

  1. F.W. Pontius, Regulations in 2000 and beyond, J. AWWA, 92 (2000) 40–54.
  2. G. Liu, R.M. Slawson, P.M. Huck, Impact of flocculated particles on low pressure UV inactivation of E. coli in drinking water, J. Water Supply Res. Technol. AQUA, 56 (2007) 153–162.
  3. C. Zhang, Z. Kai, J. Xin, X. Wang, Inactivation and antibiotic resistance variation of three Escherichia coli under ultraviolet disinfection, Chin. J. Environ. Eng., 9 (2015) 4097–4101.
  4. Y.-Q. Zhang, L.-L. Zhou, Y.-J. Zhang, Study on UV and H2O2 combined inactivation of E. coli in drinking water,
    J. Environ. Sci., 34 (2013) 2205–2209.
  5. M.-T. Guo, Q.-B. Yuan, J. Yang, Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant, Water Res., 47 (2013) 6388–6394.
  6. W.A.M. Hijnen, E.F. Beerendonk, G.J. Medema, Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: a review, Water Res., 40 (2006) 3–22.
  7. W.A.M. Hijnen, A.J. van der Veer, E.F. Beerendonk, G.J. Medema, Increased resistance of environmental anaerobic spores to inactivation by UV, Water Sci. Technol. Water Supply, 4 (2004) 55–61.
  8. S.P. Kim, H.K. Park, K. Chandran, Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline resistant bacteria: a mathematical modeling approach, Chemosphere, 78 (2010) 1071–1077.
  9. J.P. Malley, Inactivation of Pathogens with Innovative UV Technologies, AWWA Research Foundation, Environmental Protection Agency, Water Environment Research Foundation, AWWA Research Foundation and American Water Works Association, United States, 2004.
  10. H. Mamane-Gravetz, K.G. Linden, Relationship between physiochemical properties, aggregation and u.v. inactivation of isolated indigenous spores in water, J. Appl. Microbiol., 98 (2005) 351–363.
  11. J.A. Thurston-Enriquez, C.N. Haas, J. Jacangelo, K. Riley, C.P. Gerba, Inactivation of feline calicivirus and adenovirus type 40 by UV radiation, Appl. Environ. Microbiol., 69 (2003) 577–582.
  12. L. Yunlong, G. Wenshan, N. Huu Hao, N.L. Duc, H. Faisal Ibney, Z. Jian, L. Shuang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473 (2014) 619–641.
  13. M.A. Oturan, J.-J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Environ. Sci. Technol., 44 (2014) 2577–2641.
  14. R. Sommer, W. Pribil, S. Appelt, P. Gehringer, H. Eschweiler, H. Leth, A. Cabaj, T. Haider, Inactivation of bacteriophages in water by means of non-ionizing (UV-253.7 nm) and ionizing (gamma) radiation: a comparative approach, Water Res., 35 (2001) 3109–3116.
  15. Y. Zhang, J. Qiu, X. Xu, L. Zhou, Disinfection kinetics of free chlorine, monochloramines and chlorine dioxide on ammoniaoxidizing bacterium inactivation in drinking water, Water, 13 (2021) 3026, doi:10.3390/w13213026.
  16. H. Lin, J. Wu, H. Zhang, Degradation of bisphenol A in aqueous solution by a novel
    electro/Fe3+/peroxydisulfate process, Sep. Purif. Technol., 117 (2013) 18–23.
  17. I. Michael-Kordatou, M. Iacovou, Z. Frontistis, E. Hapeshi, D.D. Dionysiou, D. Fatta-Kassinos, Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation, Water Res., 85 (2015) 346–358.
  18. Y. Zhang, Y. Zhang, L. Liu, L. Zhou, Z. Zhao, Impacts of antibiotics on biofilm bacterial community and disinfection performance on simulated drinking water supply pipe wall, Environ. Pollut., 288 (2021) 117736, doi: 10.1016/j.envpol.2021.117736.
  19. M. Lilly, X. Dong, E. McCoy, L. Yang, Inactivation of Bacillus anthracis spores by single-walled carbon nanotubes coupled with oxidizing antimicrobial chemicals, Environ. Sci. Technol., 46 (2012) 13417–13424.
  20. S. Hou, L. Ling, C. Shang, Y. Guan, J. Fang, Degradation kinetics and pathways of haloacetonitriles by the UV/persulfate process, Chem. Eng. J., 320 (2017) 478–484.
  21. A.R. Khataee, O. Mirzajani, UV/peroxydisulfate oxidation of C. I. Basic Blue 3: modeling of key factors by artificial neural network, Desalination, 251 (2010) 64–69.
  22. A.M. Driedger, J.L. Rennecker, B.J. Mariñas, A.M. Driedger, J.L. Rennecker, B.J. Mariñas, Sequential inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine, Water Res., 34 (2000) 3591–3597.
  23. K.B. Yao, C.N. Haas, Inactivation of E. coli by combined action of free chlorine and monochloramine, Water Res., 25 (1991) 1027–1032.
  24. A. Mahfoudh, M. Moisan, J. Séguin, J. Barbeau, Y. Kabouzi, D. Kéroack, Inactivation of vegetative and sporulated bacteria by dry gaseous ozone, Ozone: Sci. Eng., 32 (2010) 180–198.
  25. S.A. Grinshpun, A. Adhikari, C. Li, T. Reponen, M. Yermakov, M. Schoenitz, E. Dreizin, M. Trunov, S. Mohan, Thermal inactivation of airborne viable Bacillus subtilis spores by short-term exposure in axially heated air flow, J. Aerosol Sci., 41 (2010) 352–363.
  26. O. Cerf, Tailing of survival curves of bacterial spores, J. Appl. Bacteriol., 42 (1977) 1–19.
  27. W.T. Broadwater, R.C. Hoehn, P.H. King, Sensitivity of three selected bacterial species to ozone, J. Appl. Microbiol., 26 (1973) 391–395.
  28. S. Roth, J. Feichtinger, C. Hertel, Characterization of Bacillus subtilis spore inactivation in low-pressure, low-temperature gas plasma sterilization processes, J. Appl. Microbiol., 108 (2010) 521–531.