References

  1. K.L. Lim, H. Kazemian, Z. Yaakob, W.R.W. Daud, Solid-state materials and methods for hydrogen storage:
    a critical review, Chem. Eng. Technol., 33 (2010) 213–226.
  2. J. Ren, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review, Int. J. Hydrogen Energy, 42 (2017) 289–311.
  3. K.C. Kim, A review on design strategies for metal hydrides with enhanced reaction thermodynamics for hydrogen storage applications, Int. J. Energy Res., 42 (2018) 1455–1468.
  4. T. Asefa, K. Koh, C.W. Yoon, CO2-mediated H2 storage-release with nanostructured catalysts: recent progresses, challenges, and perspectives, Adv. Energy Mater., 9 (2019) 1901158, doi:10.1002/aenm.201901158.
  5. F. Chang, W. Gao, J. Guo, P. Chen, Emerging materials and methods toward ammonia‐based energy storage and conversion, Adv. Mater., 33 (2021) 2005721, doi: 10.1002/adma.202005721.
  6. A.A. Dafedar, S.S. Verma, A. Yadav, Hydrogen Storage Techniques for Stationary and Mobile Applications:
    A Review, In: Recent Advances in Sustainable Technologies, Springer, Singapore, 2021, pp. 29–40.
  7. S . Farrukh, X. Fan, K. Mustafa, A. Hussain, M. Ayoub, M. Younas, Hydrogen from Miscellaneous Sources and Nanotechnology, In: Nanotechnology and the Generation of Sustainable Hydrogen, Green Energy and Technology, Springer, Cham, 2021, pp. 61–71. Available at: https://doi.org/10.1007/978-3-030-60402-8_6
  8. S . Hosgun, M. Ozdemir, Y.B. Sahin, Optimization of hydrogen generation by catalytic hydrolysis of NaBH4 with halloysitesupported CoB catalyst using response surface methodology, Clays Clay Miner., 69 (2021) 128–141.
  9. S .-m. Kwon, M.J. Kim, S. Kang, T. Kim, Development of a high-storage-density hydrogen generator using
    solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles, Appl. Energy, 251 (2019) 113331, doi:10.1016/j.apenergy.2019.113331.
  10. Ö. Şahin, H. Dolaş, M. Özdemir, The effect of various factors on the hydrogen generation by hydrolysis reaction of potassium borohydride, Int. J. Hydrogen Energy, 32 (2007) 2330–2336.
  11. U.B. Demirci, P. Miele, Cobalt in NaBH4 hydrolysis, Phys. Chem. Chem. Phys., 12 (2010) 14651–14665.
  12. J.-H. Kim, H. Lee, H.S. Cheol, H.-S. Kim, M.-S. Song, J.-Y. Lee, Production of hydrogen from sodium borohydride in alkaline solution: development of catalyst with high performance, Int. J. Hydrogen Energy, 29 (2004) 263–267.
  13. D. Xu, H. Wang, Q. Guo, S. Ji, Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4, Fuel Process. Technol., 92 (2011) 1606–1610.
  14. L. Laversenne, C. Goutaudier, R. Chiriac, C. Sigala, B. Bonnetot, Hydrogen storage in borohydrides comparison of hydrolysis conditions of LiBH4, NaBH4 and KBH4, J. Therm. Anal. Calorim., 94 (2008) 785–790.
  15. J.-X. Liu, M. Yang, R.-F. Jiang, X.-C. Zheng, P. Liu, Hexagonal boron nitride supported ruthenium nanoparticles as highly active catalysts for ammonia borane hydrolysis, Int. J. Hydrogen Energy, 46 (2021) 17708–17719.
  16. S . Akbayrak, S. Özkar, Cobalt ferrite supported platinum nanoparticles: superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane, J. Colloid Interface Sci., 596 (2021) 100–107.
  17. F. Akti, Hydrogen generation from hydrolysis of sodium borohydride by silica xerogel supported cobalt catalysts: positive roles of amine modification and calcination treatment, Fuel, 303 (2021) 121326.
  18. A.F. Baye, M.W. Abebe, R. Appiah-Ntiamoah, H. Kim, Engineered iron-carbon-cobalt (Fe3O4@C-Co) core-shell composite with synergistic catalytic properties towards hydrogen generation via NaBH4 hydrolysis, J. Colloid Interface Sci., 543 (2019) 273–284.
  19. H .C. Brown, C.A. Brown, New, highly active metal catalysts for the hydrolysis of borohydride, J. Am. Chem. Soc., 84 (1962) 1493–1494.
  20. D. Kilinc, O. Sahin, Ruthenium-Imine catalyzed KBH4 hydrolysis as an efficient hydrogen production system, Int. J. Hydrogen Energy, 46 (2021) 20984–20994.
  21. Q. Yao, Z.-H. Lu, Y. Yang, Y. Chen, X. Chen, H.-L. Jiang, Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane, Nano Res., 11 (2018) 4412–4422.
  22. Y .-H. Zhou, S. Wang, Z. Zhang, N. Williams, Y. Cheng, J. Gu, Hollow nickel–cobalt layered double hydroxide supported palladium catalysts with superior hydrogen evolution activity for hydrolysis of ammonia borane, ChemCatChem; European Soc. J. Catal., 10 (2018) 3206–3213.
  23. Y . Jiang, X. Zhang, X. Dai, Q. Sheng, H. Zhuo, J. Yong, Y. Wang, K. Yu, L. Yu, C. Luan, H. Wang, Y. Zhu, X. Duan,
    P. Che, In situ synthesis of core–shell Pt–Cu frame@metal–organic frameworks as multifunctional catalysts for hydrogenation reaction, Chem. Mater., 29 (2017) 6336–6345.
  24. Y . Guo, T. Park, J.W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang, Y. Yamauchi, Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting, Adv. Mater., 31 (2019) 1807134, doi: 10.1002/ adma.201807134.
  25. Y . Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts, Chem. Mater., 29 (2017) 5566–5573.
  26. Y . Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando, Y, Yamauchi, Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting, Nano Energy, 47 (2018) 494–502.
  27. H . Duan, Y. Tian, S. Gong, B. Zhang, Z. Lu, Y. Xia, Y. Shi, C. Qiao, Effects of crystallite sizes of Pt/HZS M-5 zeolite catalysts on the hydrodeoxygenation of guaiacol, Nanomaterials, 10 (2020) 2246, doi:10.3390/nano10112246.
  28. J. Oenema, J. Harmel, R. Pérez Vélez, M.J. Meijerink, W. Eijsvogel, A. Poursaeidesfahani, T.J.H. Vlugt, J. Zečević, K.P. de Jong, Influence of nanoscale intimacy and zeolite micropore size on the performance of bifunctional catalysts for n-heptane hydroisomerization, ACS Catal., 10 (2020) 14245–14257.
  29. A.S.B.M. Najib, M. Iqbal, M.B. Zakaria, S. Shoji, Y. Cho, X. Peng, S. Ueda, A. Hashimoto, T. Fujita, M. Miyauchi,
    Y. Yamauchi, H. Abe, Active faceted nanoporous ruthenium for electrocatalytic hydrogen evolution, J. Mater. Chem. A, 8 (2020) 19788–19792.
  30. Z .-L. Wang, K. Sun, J. Henzie, X. Hao, C. Li, T. Takei, Y.-M. Kang, Y. Yamauchi, Spatially confined assembly of monodisperse ruthenium nanoclusters in a hierarchically ordered carbon electrode for efficient hydrogen evolution, Angew. Chem. Int. Ed. Engl., 57 (2018) 5848–5852.
  31. Z . Zhang, K. Yao, L. Cong, Z. Yu, L. Qu, W. Huang, Facile synthesis of a Ru-dispersed N-doped carbon framework catalyst for electrochemical nitrogen reduction, Catal. Sci. Technol., 10 (2020) 1336–1342.
  32. B. Zheng, L. Ma, B. Li, D. Chen, X. Li, J. He, J. Xie, M. Robert, T.-C. Lau, pH universal Ru@N-doped carbon catalyst for efficient and fast hydrogen evolution, Catal. Sci. Technol., 10 (2020) 4405–4411.
  33. X. Yang, X. Wang, J. Qiu, Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets, Appl. Catal., A, 382 (2010) 131–137.
  34. M.A. Watzky, R.G. Finke, Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth, J. Am. Chem. Soc., 119 (1997) 10382–10400.
  35. Z . Sun, X. Zhang, Z.L. Na, B. Han, G. An, Synthesis of ZrO2−carbon nanotube composites and their application as chemiluminescent sensor material for ethanol, J. Phys. Chem. B, 110 (2006) 13410–13414.
  36. H .-B. Dai, Y. Liang, L.-P. Ma, P. Wang, New insights into catalytic hydrolysis kinetics of sodium borohydride from Michaelis−Menten model, J. Phys. Chem. C, 112 (2008) 15886–15892.
  37. S .U. Jeong, R.K. Kim, E.A. Cho, H.-J. Kim, S.-W. Nam, I.-H. Oh, S.-A. Hong, S.H. Kim, A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst, J. Power Sources, 144 (2005) 129–134.
  38. Q. Zhang, Y. Wu, X. Sun, J. Ortega, Kinetics of catalytic hydrolysis of stabilized sodium borohydride solutions, Ind. Eng. Chem. Res., 46 (2007) 1120–1124.
  39. H . Song, Y. Cheng, B. Li, Y. Fan, B. Liu, Z. Tang, S. Lu, Carbon dots and RuP2 nanohybrid as an efficient bifunctional catalyst for electrochemical hydrogen evolution reaction and hydrolysis of ammonia borane, ACS Sustainable Chem. Eng., 8 (2020) 3995–4002.
  40. H . Wang, L. Zhou, M. Han, Z. Tao, F. Cheng, J. Chen, CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane, J. Power Sources, 651 (2015) 382–388.
  41. H . Liang, G. Chen, S. Desinan, R. Rosei, F. Rosei, D. Ma, In situ facile synthesis of ruthenium nanocluster catalyst supported on carbon black for hydrogen generation from the hydrolysis of ammonia-borane, Int. J. Hydrogen Energy, 37 (2012) 17921–17927.
  42. K. Yang, L. Zhou, G. Yu, X. Xiong, M. Ye, Y. Li, D. Lu, Y. Pan, M. Chen, L. Zhang, D. Gao, Z. Wang, L. Zheng, H. Liu, Q. Xia, Ru nanoparticles supported on MIL-53 (Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 41 (2016) 6300–6309.
  43. N. Cao, W. Luo, G. Cheng, One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 38 (2013) 11964–11972.