References
- K.L. Lim, H. Kazemian, Z. Yaakob, W.R.W. Daud, Solid-state
materials and methods for hydrogen storage:
a critical review,
Chem. Eng. Technol., 33 (2010) 213–226.
- J. Ren, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, Current
research trends and perspectives on materials-based hydrogen
storage solutions: a critical review, Int. J. Hydrogen Energy,
42 (2017) 289–311.
- K.C. Kim, A review on design strategies for metal hydrides
with enhanced reaction thermodynamics for hydrogen storage
applications, Int. J. Energy Res., 42 (2018) 1455–1468.
- T. Asefa, K. Koh, C.W. Yoon, CO2-mediated H2 storage-release
with nanostructured catalysts: recent progresses, challenges,
and perspectives, Adv. Energy Mater., 9 (2019) 1901158,
doi:10.1002/aenm.201901158.
- F. Chang, W. Gao, J. Guo, P. Chen, Emerging materials
and methods toward ammonia‐based energy storage and
conversion, Adv. Mater., 33 (2021) 2005721, doi: 10.1002/adma.202005721.
- A.A. Dafedar, S.S. Verma, A. Yadav, Hydrogen Storage
Techniques for Stationary and Mobile Applications:
A Review,
In: Recent Advances in Sustainable Technologies, Springer,
Singapore, 2021, pp. 29–40.
- S . Farrukh, X. Fan, K. Mustafa, A. Hussain, M. Ayoub, M. Younas,
Hydrogen from Miscellaneous Sources and Nanotechnology, In:
Nanotechnology and the Generation of Sustainable Hydrogen,
Green Energy and Technology, Springer, Cham, 2021, pp. 61–71.
Available at: https://doi.org/10.1007/978-3-030-60402-8_6
- S . Hosgun, M. Ozdemir, Y.B. Sahin, Optimization of hydrogen
generation by catalytic hydrolysis of NaBH4 with halloysitesupported
CoB catalyst using response surface methodology,
Clays Clay Miner., 69 (2021) 128–141.
- S .-m. Kwon, M.J. Kim, S. Kang, T. Kim, Development of a high-storage-density hydrogen generator using
solid-state NaBH4 as
a hydrogen source for unmanned aerial vehicles, Appl. Energy,
251 (2019) 113331, doi:10.1016/j.apenergy.2019.113331.
- Ö. Şahin, H. Dolaş, M. Özdemir, The effect of various factors on
the hydrogen generation by hydrolysis reaction of potassium
borohydride, Int. J. Hydrogen Energy, 32 (2007) 2330–2336.
- U.B. Demirci, P. Miele, Cobalt in NaBH4 hydrolysis, Phys.
Chem. Chem. Phys., 12 (2010) 14651–14665.
- J.-H. Kim, H. Lee, H.S. Cheol, H.-S. Kim, M.-S. Song, J.-Y. Lee,
Production of hydrogen from sodium borohydride in alkaline
solution: development of catalyst with high performance, Int. J.
Hydrogen Energy, 29 (2004) 263–267.
- D. Xu, H. Wang, Q. Guo, S. Ji, Catalytic behavior of carbon
supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by
hydrolysis of KBH4, Fuel Process. Technol., 92 (2011) 1606–1610.
- L. Laversenne, C. Goutaudier, R. Chiriac, C. Sigala, B. Bonnetot,
Hydrogen storage in borohydrides comparison of hydrolysis
conditions of LiBH4, NaBH4 and KBH4, J. Therm. Anal. Calorim.,
94 (2008) 785–790.
- J.-X. Liu, M. Yang, R.-F. Jiang, X.-C. Zheng, P. Liu, Hexagonal
boron nitride supported ruthenium nanoparticles as highly
active catalysts for ammonia borane hydrolysis, Int. J. Hydrogen
Energy, 46 (2021) 17708–17719.
- S . Akbayrak, S. Özkar, Cobalt ferrite supported platinum
nanoparticles: superb catalytic activity and outstanding
reusability in hydrogen generation from the hydrolysis of
ammonia borane, J. Colloid Interface Sci., 596 (2021) 100–107.
- F. Akti, Hydrogen generation from hydrolysis of sodium
borohydride by silica xerogel supported cobalt catalysts:
positive roles of amine modification and calcination treatment,
Fuel, 303 (2021) 121326.
- A.F. Baye, M.W. Abebe, R. Appiah-Ntiamoah, H. Kim, Engineered
iron-carbon-cobalt (Fe3O4@C-Co) core-shell composite with
synergistic catalytic properties towards hydrogen generation
via NaBH4 hydrolysis, J. Colloid Interface Sci., 543 (2019)
273–284.
- H .C. Brown, C.A. Brown, New, highly active metal catalysts
for the hydrolysis of borohydride, J. Am. Chem. Soc., 84 (1962)
1493–1494.
- D. Kilinc, O. Sahin, Ruthenium-Imine catalyzed KBH4
hydrolysis as an efficient hydrogen production system, Int. J.
Hydrogen Energy, 46 (2021) 20984–20994.
- Q. Yao, Z.-H. Lu, Y. Yang, Y. Chen, X. Chen, H.-L. Jiang, Facile
synthesis of graphene-supported Ni-CeOx nanocomposites as
highly efficient catalysts for hydrolytic dehydrogenation of
ammonia borane, Nano Res., 11 (2018) 4412–4422.
- Y .-H. Zhou, S. Wang, Z. Zhang, N. Williams, Y. Cheng, J. Gu,
Hollow nickel–cobalt layered double hydroxide supported
palladium catalysts with superior hydrogen evolution activity
for hydrolysis of ammonia borane, ChemCatChem; European
Soc. J. Catal., 10 (2018) 3206–3213.
- Y . Jiang, X. Zhang, X. Dai, Q. Sheng, H. Zhuo, J. Yong, Y. Wang,
K. Yu, L. Yu, C. Luan, H. Wang, Y. Zhu, X. Duan,
P. Che, In situ
synthesis of core–shell Pt–Cu frame@metal–organic frameworks
as multifunctional catalysts for hydrogenation reaction, Chem.
Mater., 29 (2017) 6336–6345.
- Y . Guo, T. Park, J.W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang,
Y. Bando, Y. Sugahara, J. Tang, Y. Yamauchi, Nanoarchitectonics
for transition-metal-sulfide-based electrocatalysts for water
splitting, Adv. Mater., 31 (2019) 1807134, doi: 10.1002/
adma.201807134.
- Y . Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, One-pot
synthesis of zeolitic imidazolate framework 67-derived hollow
Co3S4@MoS2 heterostructures as efficient bifunctional catalysts,
Chem. Mater., 29 (2017) 5566–5573.
- Y . Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando, Y, Yamauchi,
Elaborately assembled core-shell structured metal sulfides
as a bifunctional catalyst for highly efficient electrochemical
overall water splitting, Nano Energy, 47 (2018) 494–502.
- H . Duan, Y. Tian, S. Gong, B. Zhang, Z. Lu, Y. Xia, Y. Shi,
C. Qiao, Effects of crystallite sizes of Pt/HZS M-5 zeolite catalysts
on the hydrodeoxygenation of guaiacol, Nanomaterials,
10 (2020) 2246, doi:10.3390/nano10112246.
- J. Oenema, J. Harmel, R. Pérez Vélez, M.J. Meijerink, W. Eijsvogel,
A. Poursaeidesfahani, T.J.H. Vlugt, J. Zečević, K.P. de Jong,
Influence of nanoscale intimacy and zeolite micropore size
on the performance of bifunctional catalysts for n-heptane
hydroisomerization, ACS Catal., 10 (2020) 14245–14257.
- A.S.B.M. Najib, M. Iqbal, M.B. Zakaria, S. Shoji, Y. Cho,
X. Peng, S. Ueda, A. Hashimoto, T. Fujita, M. Miyauchi,
Y. Yamauchi, H. Abe, Active faceted nanoporous ruthenium for
electrocatalytic hydrogen evolution, J. Mater. Chem. A, 8 (2020)
19788–19792.
- Z .-L. Wang, K. Sun, J. Henzie, X. Hao, C. Li, T. Takei, Y.-M. Kang,
Y. Yamauchi, Spatially confined assembly of monodisperse
ruthenium nanoclusters in a hierarchically ordered carbon
electrode for efficient hydrogen evolution, Angew. Chem. Int.
Ed. Engl., 57 (2018) 5848–5852.
- Z . Zhang, K. Yao, L. Cong, Z. Yu, L. Qu, W. Huang, Facile
synthesis of a Ru-dispersed N-doped carbon framework
catalyst for electrochemical nitrogen reduction, Catal. Sci.
Technol., 10 (2020) 1336–1342.
- B. Zheng, L. Ma, B. Li, D. Chen, X. Li, J. He, J. Xie, M. Robert,
T.-C. Lau, pH universal Ru@N-doped carbon catalyst for
efficient and fast hydrogen evolution, Catal. Sci. Technol.,
10 (2020) 4405–4411.
- X. Yang, X. Wang, J. Qiu, Aerobic oxidation of alcohols over
carbon nanotube-supported Ru catalysts assembled at the
interfaces of emulsion droplets, Appl. Catal., A, 382 (2010)
131–137.
- M.A. Watzky, R.G. Finke, Transition metal nanocluster
formation kinetic and mechanistic studies. A new mechanism
when hydrogen is the reductant: slow, continuous nucleation
and fast autocatalytic surface growth, J. Am. Chem. Soc.,
119 (1997) 10382–10400.
- Z . Sun, X. Zhang, Z.L. Na, B. Han, G. An, Synthesis of
ZrO2−carbon nanotube composites and their application as
chemiluminescent sensor material for ethanol, J. Phys. Chem. B,
110 (2006) 13410–13414.
- H .-B. Dai, Y. Liang, L.-P. Ma, P. Wang, New insights into catalytic
hydrolysis kinetics of sodium borohydride from Michaelis−Menten model, J. Phys. Chem. C, 112 (2008) 15886–15892.
- S .U. Jeong, R.K. Kim, E.A. Cho, H.-J. Kim, S.-W. Nam, I.-H. Oh,
S.-A. Hong, S.H. Kim, A study on hydrogen generation from
NaBH4 solution using the high-performance Co-B catalyst,
J. Power Sources, 144 (2005) 129–134.
- Q. Zhang, Y. Wu, X. Sun, J. Ortega, Kinetics of catalytic
hydrolysis of stabilized sodium borohydride solutions,
Ind. Eng. Chem. Res., 46 (2007) 1120–1124.
- H . Song, Y. Cheng, B. Li, Y. Fan, B. Liu, Z. Tang, S. Lu, Carbon
dots and RuP2 nanohybrid as an efficient bifunctional catalyst
for electrochemical hydrogen evolution reaction and hydrolysis
of ammonia borane, ACS Sustainable Chem. Eng., 8 (2020)
3995–4002.
- H . Wang, L. Zhou, M. Han, Z. Tao, F. Cheng, J. Chen, CuCo
nanoparticles supported on hierarchically porous carbon as
catalysts for hydrolysis of ammonia borane, J. Power Sources,
651 (2015) 382–388.
- H . Liang, G. Chen, S. Desinan, R. Rosei, F. Rosei, D. Ma, In situ
facile synthesis of ruthenium nanocluster catalyst supported
on carbon black for hydrogen generation from the hydrolysis
of ammonia-borane, Int. J. Hydrogen Energy, 37 (2012)
17921–17927.
- K. Yang, L. Zhou, G. Yu, X. Xiong, M. Ye, Y. Li, D. Lu, Y. Pan,
M. Chen, L. Zhang, D. Gao, Z. Wang, L. Zheng, H. Liu, Q. Xia,
Ru nanoparticles supported on MIL-53 (Cr, Al) as efficient
catalysts for hydrogen generation from hydrolysis of ammonia
borane, Int. J. Hydrogen Energy, 41 (2016) 6300–6309.
- N. Cao, W. Luo, G. Cheng, One-step synthesis of graphene
supported Ru nanoparticles as efficient catalysts for hydrolytic
dehydrogenation of ammonia borane, Int. J. Hydrogen Energy,
38 (2013) 11964–11972.