References
- P. Bhatia, M. Nath, Green synthesis of p-NiO/n-ZnO
nanocomposites: excellent adsorbent for removal of Congo
red and efficient catalyst for reduction of 4-nitrophenol
present in wastewater, J. Water Process Eng., 33 (2020) 101017,
doi: 10.1016/j.jwpe.2019.101017.
- S.R. Manippady, A. Singh, B.M. Basavaraja, A.K. Samal,
S. Srivastava, M. Saxena, Iron–carbon hybrid magnetic nanosheets
for adsorption-removal of organic dyes and 4-nitrophenol
from aqueous solution, ACS Appl. Nano Mater., 3 (2020)
1571–1582.
- N. Alhokbany, T. Ahama, Ruksana, Mu. Naushad, S.M. Alshehri,
AgNPs embedded N-doped highly porous carbon derived
from chitosan based hydrogel as catalysts for the reduction of
4-nitrophenol, Compos. Part B, 173 (2019) 106950, doi: 10.1016/j.
compositesb.2019.106950.
- M. Guzmán, M. Estrada, S. Miridonov, A. Simakov, Synthesis of
cerium oxide (IV) hollow nanospheres with tunable structure
and their performance in the 4-nitrophenol adsorption,
Microporous Mesoporous Mater., 278 (2019) 241–250.
- J. Luo, Y. Gao, K. Tan, W. Wei, X. Liu, Preparation of a magnetic
molecularly imprinted graphene composite highly adsorbent
for 4-nitrophenol in aqueous medium, ACS Sustainable Chem.
Eng.,4 (2016) 3316–3326.
- P. Cyganowski, D. Jermakowicz-Bartkowiak, A. Lesniewicz,
P. Pohl, A. Dzimitrowicz, Highly efficient and convenient
nanocomposite catalysts produced using in-situ approach for
decomposition of 4-nitrophenol, Colloids Surf., A, 590 (2020)
124452, doi: 10.1016/j.colsurfa.2020.124452.
- H.N. Abdelhamid, High performance and ultrafast reduction
of 4-nitrophenol using metal-organic frameworks, J. Environ.
Chem. Eng., 9 (2020) 104404, doi: 10.1016/j.jece.2020.104404.
- P.T. Dhorabe, D.H. Lataye, R.S. Ingole, Removal of 4-nitrophenol
from aqueous solution by adsorption onto activated carbon
prepared from Acacia glauca sawdust, Water Sci. Technol.,
73 (2016) 955–966.
- A. Kumar, S. Kumar, S. Kumar, D.V. Gupta, Adsorption of
phenol and 4-nitrophenol on granular activated carbon in
basal salt medium: equilibrium and kinetics, J. Hazard. Mater.,
147 (2007) 155–166.
- L.C.A. Oliveira, E. Pereira, I.R. Guimaraes, A. Vallone, M. Pereira,
J.P. Mesquita, K. Sapag, Preparation of activated carbons from
coffee husks utilizing FeCl3 and ZnCl2 as activating agents,
J. Hazard. Mater., 165 (2009) 87–94.
- J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto, Preparation
of activated carbon from peanut shell by conventional pyrolysis
and microwave irradiation-pyrolysis to remove organic dyes
from aqueous solutions, J. Environ. Chem. Eng., 4 (2016)
266–275.
- B. Cardoso, A.S. Mestre, A.P. Carvalho, J. Pires, Activated
carbon derived from cork powder waste by KOH activation:
preparation, characterization, and VOCs adsorption, Ind. Eng.
Chem. Res., 47 (2008) 5841–5846.
- A.C. Lua, J. Guo, Preparation and characterization of activated
carbons from oil-palm stones for gas-phase adsorption, Colloids
Surf., A, 179 (2001) 151–162.
- M.M. Karthika, M. Vasuki, Adsorption of Alizarine Red-S dye
from aqueous solution by cane sugar bagasse: resolution of
isotherm, kinetic and thermodynamics, Int. J. Appl. Eng. Res.,
13 (2018) 10260–10267.
- P. Ganguly, R. Sarkhel, P. Das, Synthesis of pyrolyzed biochar
and its application for dye removal: batch, kinetic and isotherm
with linear and non-linear mathematical analysis, Surf.
Interfaces, 20 (2020) 100616, doi: 10.1016/j.surfin.2020.100616.
- F. Batool, J. Akbar, S. Iqbal, S. Noreen, S.N.A. Bukhari, Study
of isothermal, kinetic, and thermodynamic parameters for
adsorption of cadmium: an overview of linear and nonlinear
approach and error analysis, Bioinorg. Chem. Appl., 2018 (2018)
3463724, doi: 10.1155/2018/3463724.
- S. Akazdam, M. Chafi, W. Yassine, B. Gourich, Removal of acid
orange 7 dye from aqueous solution using the exchange resin
amberlite FPA-98 as an efficient absorbent: kinetics, isotherms,
and thermodynamics study,
J. Mater. Environ. Sci., 8 (2017)
2993–3012.
- C.A. Başar, Applicability of the various adsorption models of
three dyes adsorption onto activated carbon prepared waste
apricot, J. Hazard. Mater., 135 (2006) 232–241.
- H. Masood, S. Zafar, H. ur Rehman, M.I. Khan, H.B. Ahmad,
A. Naz, W. Hassan, M.H. Lashari, Adsorptive removal of
anionic dyes in aqueous binary mixture by anion exchange
membrane, Desal. Water Treat., 194 (2020) 248–258.
- A.V. Hill, The possible effects of the aggregation of the molecules
of haemoglobin on its dissociation curves,
J. Physiol., 40 (1910)
4–7.
- M. Salimi, Z. Salehi, H. Heidari, F. Vahabzadeh, Production of
activated biochar from Luffa cylindrica and its application for
adsorption of 4-nitrophenol, J. Environ. Chem. Eng., 9 (2021)
105403, doi:10.1016/j.jece.2021.105403.
- T.R. Bastami, M.H. Entezari, Activated carbon from carrot
dross combined with magnetite nanoparticles for the efficient
removal of p-nitrophenol from aqueous solution, Chem. Eng. J.,
210 (2012) 510–519.
- M. Ahmaruzzaman, S. Laxmi Gayatri, Batch adsorption of
4-nitrophenol by acid activated jute stick char: equilibrium,
kinetic and thermodynamic studies, Chem. Eng. J., 158 (2010)
173–180.
- L. Baloo, M.H. Isa, N.B. Sapari, A.H. Jagaba, L.J. Wei, S. Yavari,
R. Razali, R. Vasu, Adsorptive removal of methylene blue and
acid orange 10 dyes from aqueous solutions using oil palm
wastes-derived activated carbons, Alexandria Eng. J., 60 (2021)
5611–5629.
- S. Mishra, S.S. Yadav, S. Rawat, J. Singh, J.R. Koduru, Corn husk
derived magnetized activated carbon for the removal of phenol
and para-nitrophenol from aqueous solution: interaction
mechanism, insights on adsorbent characteristics, and
isothermal, kinetic and thermodynamic properties, J. Environ.
Manage., 246 (2019) 362–373.