References
   -  B. Bansal, X.D. Chen, M.-S. Hans, Analysis of ‘classical’
    deposition rate law for crystallization fouling, Chem. Eng.
    Process., 47 (2008) 1201–1210. 
 
  -  D. Heath, B. Širok, M. Hočevar, B. Pečnik, The use of the
	  cavitation effect in the mitigation of CaCO3 deposits, J. Mech.
    Eng., 59 (2013) 203–215. 
 
  -  B. Bansal, M.-S. Hans, Crystallization fouling in plate heat
    exchangers, J. Heat Transfer, 115 (1993) 584–591. 
 
  -  Z.H. Quan, Y.C. Chen, C.F. Ma, Experimental study of
    fouling on heat transfer surface during forced convective heat
    transfer, Chin. J. Chem. Eng., 16 (2008) 535–540. 
 
  -  Q.F. Yang, Y.Q. Liu, A.Z. Gu, J. Ding, Z.Q. Shen, Investigation of
    induction period and morphology of CaCO3 fouling on heated
    surface, Chem. Eng. Sci., 57 (2002) 921–931. 
 
  -  M.O. Budair, M.S. Khan, S.M. Zubair, A.K. Sheikh, A. Quddus,
    CaCO3 scaling in AISI 316 stainless steel tubes - effect of thermal
    and hydraulic parameters on the induction time and growth
    rate, Heat Mass Transfer, 34 (1998) 163–170. 
 
  -  A. Al-Gailani, O. Sanni, T.V.J. Charpentier, R. Crisp, J.H. Bruins,
    A. Neville, Examining the effect of ionic constituents on
    crystallization fouling on heat transfer surfaces, Int. J. Heat
    Mass Transfer, 160 (2020) 120180–120189. 
 
  -  J.J. Zhao, M.H. Wang, H.M.S. Lababidi, H. Al-Adwani,
    K.K. Gleason, A review of heterogeneous nucleation of calcium
    carbonate and control strategies for scale formation in multistage
    flash (MSF) desalination plants, Desalination, 442 (2018)
    75–88. 
 
  -  Y.D. Liang, Y. Xu, M. Jia, J.G. Wang, Experimental study on the
    influence of an alternating magnetic field on the CaCO3 fouling
    of a heat transfer surface, Int. J. Heat Mass Transfer, 183 (2022)
    122156–122166. 
 
  -  H. Schlichting, G. Klaus, Boundary-Layer Theory, Springer
    Publications, Germany, 2003. 
 
  -  B.D. Crittenden, E.M.H. Khater, Fouling From Vaporizing
    Kerosine, J. Heat Transfer, 109 (1987) 583–589. 
 
  -  T.M. Pääkkönen, M. Riihimäki, C.J. Simonson, E. Muurinen,
    R.L. Keiski, Crystallization fouling of CaCO3 – analysis of
    experimental thermal resistance and its uncertainty, Int. J. Heat
    Mass Transfer, 55 (2012) 6927–6937. 
 
  -  D.Q. Kern, R.A. Seaton, A theoretical analysis of thermal surface
    fouling, Br. Chem. Eng., 4 (1959) 258–262. 
 
  -  M.G. Mwaba, M.R. Golriz, J. Gu, A semi-empirical correlation
    for crystallization fouling on heat exchange surfaces, Appl.
    Therm. Eng., 26 (2006) 440–447. 
 
  -  O.P. Arsenyeva, B. Crittenden, M. Yang, P.O. Kapustenko,
    Accounting for the thermal resistance of cooling water fouling
    in plate heat exchangers, Appl. Therm. Eng., 61 (2013) 53–59. 
 
  -  L.C. Wang, S.F. Li, L.B. Wang, K. Cui, Q.L. Zhang, H.B. Liu,
    G. Li, Relationships between the characteristics of CaCO3
    fouling and the flow velocity in smooth tube, Exp. Therm. Fluid
    Sci., 74 (2016) 143–159. 
 
  -  T.M. Pääkkönen, U. Ojaniemi, T. Pättikangas, M. Manninen,
    E. Muurinen, R.L. Keiski, C.J. Simonson, CFD modelling of
    CaCO3 crystallization fouling on heat transfer surfaces, Int. J.
    Heat Mass Transfer, 97 (2016) 618–630. 
 
  -  R. Segev, D. Hasson, R. Semiat, Rigorous modeling of the
    kinetics of calcium carbonate deposit formation, AIChE J.,
    58 (2012) 1222–1229. 
 
  -  K. Grijspeerdt, L. Mortier, J. De Block, R. Van Renterghem,
    Applications of modelling to optimise ultra high temperature
    milk heat exchangers with respect to fouling, Food Control,
    15 (2004) 117–130. 
 
  -  F. Brahim, W. Augustin, M. Bohnet, Numerical simulation of the
    fouling process, Int. J. Therm. Sci., 42 (2003) 323–334. 
 
  -  F. Zhang, J. Xiao, X.D. Chen, Towards predictive modeling of
    crystallization fouling: a pseudo-dynamic approach, Food
    Bioprod. Process., 93 (2015) 188–196. 
 
  -  I. Babuška, R.S. Silva, J. Actor, Break-off model for CaCO3
    fouling in heat exchangers, Int. J. Heat Mass Transfer, 116 (2018)
    104–114. 
 
  -  R.J. Moffat, Describing the uncertainties in experimental results,
    Exp. Therm. Fluid Sci., 1 (1988) 3–17. 
 
  -  H. Elfil, H. Roques, Prediction of the limit of the metastable
    zone in the “CaCO3-CO2-H2O” system, AIChE J., 50 (2004)
    1908–1916. 
 
  -  X. Zhao, X.D. Chen, A critical review of basic crystallography
    to salt crystallization fouling in heat exchangers, Heat Transfer
    Eng., 34 (2013) 719–732. 
 
  -  P.G. Koutsoukos, C.G. Kontoyannis, Precipitation of calcium
    carbonate in aqueous solutions, J. Chem. Soc., 80 (1984)
    1181–1192. 
 
  -  T.R. Bott, R.A. Walker, Fouling in heat transfer equipment,
    Chem. Eng., 15 (1971) 391–395. 
 
  -  T. Chen, A. Neville, M. Yuan, Calcium carbonate scale
    formation—assessing the initial stages of precipitation and
    deposition, J. Pet. Sci. Eng., 46 (2005) 185–194. 
 
  -  B. Pernot, M. Euvrard, P. Simon, Effects of iron and manganese
    on the scaling potentiality of water, J. Water Supply Res.
    Technol. AQUA, 47 (1998) 21–29. 
 
  -  K. Sangwal, Additives and Crystallization Processes: From
    Fundamentals to Applications, Wiley, 2007. 
 
  -  C. Berger, A. Dandeu, C. Carteret, B. Humbert, H. Muhr,
    E. Plasari, J.M. Bossoutrot, Relations for the determination of
    the polymorphic composition of calcium carbonate precipitated
    in saturated sodium chloride solutions, Chem. Eng. Trans.,
    17 (2009) 681–686. 
 
  -  K. Semra, O. Mualla, Effect of the experimental parameters on
    calcium carbonate precipitation, Chem. Eng. Trans., 32 (2013)
	  2119–2124.