References

  1. N. Gaikwad, R. Nakka, V. Khavala, A. Bhadani, H. Mamane, R. Kumar, Gas hydrate-based process for desalination of heavy metal ions from an aqueous solution: kinetics and rate of recovery, ACS ES&T Water,
    1 (2021) 134–144.
  2. P. Sahu, Clathrate hydrate technology for water reclamation: present status and future prospects, J. Water Process Eng., 41 (2021) 102058, doi: 10.1016/j.jwpe.2021.102058.
  3. E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases, CRC Press, Boca Raton, 2007. Available at: https://www.crcpress. com/Clathrate-Hydrates-of-Natural-Gases/Jr-Koh-Koh/p/ book/9780849390784
  4. J. Javanmardi, M. Moshfeghian, Energy consumption and economic evaluation of water desalination by hydrate phenomenon, Appl. Therm. Eng., 23 (2003) 845–857.
  5. S. Han, Y.-W. Rhee, S.-P. Kang, Investigation of salt removal using cyclopentane hydrate formation and washing treatment for seawater desalination, Desalination, 404 (2017) 132–137.
  6. P. Sahu, S. Krishnaswamy, K. Ponnani, N.K. Pande, A thermodynamic approach to selection of suitable hydrate formers for seawater desalination, Desalination, 436 (2018) 144–151.
  7. S. Ho-Van, B. Bouillot, J. Douzet, S. Maghsoodloo Babakhani, J.M. Herri, Cyclopentane hydrates – a candidate for desalination?, J. Environ. Chem. Eng., 7 (2019) 103359, doi: 10.1016/J.JECE.2019.103359.
  8. T. He, Z.R. Chong, P. Babu, P. Linga, Techno-economic evaluation of cyclopentane hydrate-based desalination with liquefied natural gas cold energy utilization, Energy Technol., 8 (2020) 1900212, doi:10.1002/ente.201900212.
  9. D. Corak, T. Barth, S. Høiland, T. Skodvin, R. Larsen, T. Skjetne, Effect of subcooling and amount of hydrate former on formation of cyclopentane hydrates in brine, Desalination, 278 (2011) 268–274.
  10. Y.-N. Lv, S.-S. Wang, C.-Y. Sun, J. Gong, G.-J. Chen, Desalination by forming hydrate from brine in cyclopentane dispersion system, Desalination, 413 (2017) 217–222.
  11. J.-H. Cha, Y. Seol, Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests, ACS Sustainable Chem. Eng., 1 (2013) 1218–1224.
  12. F. Li, Z. Chen, H. Dong, C. Shi, B. Wang, L. Yang, Z. Ling, Promotion effect of graphite on cyclopentane hydrate based desalination, Desalination, 445 (2018) 197–203.
  13. E.G. Dirdal, C. Arulanantham, H. Sefidroodi, M.A. Kelland, Can cyclopentane hydrate formation be used to rank the performance of kinetic hydrate inhibitors?, Chem. Eng. Sci., 82 (2012) 177–184.
  14. J. Zhang, P. Yedlapalli, J.W. Lee, Thermodynamic analysis of hydrate-based pre-combustion capture of CO2, Chem. Eng. Sci., 64 (2009) 4732–4736.
  15. A.T. Trueba, L.J. Rovetto, L.J. Florusse, M.C. Kroon, C.J. Peters, Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters, Fluid Phase Equilib., 307 (2011) 6–10.
  16. S. Han, J.-Y. Shin, Y.-W. Rhee, S.-P. Kang, Enhanced efficiency of salt removal from brine for cyclopentane hydrates by washing, centrifuging, and sweating, Desalination, 354 (2014) 17–22.
  17. H. Xu, M.N. Khan, C.J. Peters, E.D. Sloan, C.A. Koh, Hydratebased desalination using cyclopentane hydrates at atmospheric pressure, J. Chem. Eng. Data, 63 (2018) 1081–1087.
  18. Z. Ling, C. Shi, F. Li, Y. Fu, J. Zhao, H. Dong, Y. Yang, H. Zhou, S. Wang, Y. Song, Desalination and Li+ enrichment via formation of cyclopentane hydrate, Sep. Purif. Technol., 231 (2020) 115921, doi:10.1016/j.seppur.2019.115921.
  19. T. He, S.K. Nair, P. Babu, P. Linga, I.A. Karimi, A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy, Appl. Energy, 222 (2018) 13–24.
  20. Z.R. Chong, T. He, P. Babu, J. Zheng, P. Linga, Economic evaluation of energy efficient hydrate based desalination utilizing cold energy from liquefied natural gas (LNG), Desalination, 463 (2019) 69–80.
  21. B. Mottet, Method for Treating an Aqueous Solution Containing Dissolved Materials by Crystallization of Clathrates Hydrates, US20170044024A1, 2017.
  22. M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, The thermophysical properties of seawater: a review of existing correlations and data, Desal. Water Treat., 16 (2010) 354–380.
  23. R. Tanaka, Excess heat-capacities for mixtures of benzene with cyclopentane, methylcyclohexane, and cyclooctane at 298.15-K, J. Chem. Eng. Data, 30 (1985) 267–269.
  24. H. Delroisse, F. Plantier, L. Marlin, C. Dicharry, L. Frouté, R. André, J.-P. Torré, Determination of thermophysical properties of cyclopentane hydrate using a stirred calorimetric cell, J. Chem. Thermodyn., 125 (2018) 136–141.
  25. A.S. Dalkilic, S. Wongwises, A performance comparison of vapour-compression refrigeration system using various alternative refrigerants, Int. Commun. Heat Mass Transf., 37 (2010) 1340–1349.
  26. I.S. Sandler, Chemical, Biochemical, and Engineering Thermodynamics, 5th ed., Wiley, Wiley India, New Delhi, 2006.
  27. M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical Engineers, 5th ed., McGraw-Hill Professional, New York, NY, 2002.
  28. W.D. Seider, Product and Process Design Principles: Synthesis, analysis, and Evaluation, 2nd ed., Wiley, New York, 2004. Available at: https://search.library.wisc.edu/catalog/999975575102121
  29. The Chemical Engineering Plant Cost Index, (n.d.). Available at: https://www.chemengonline.com/pci-home (accessed May 12, 2021).
  30. J. Javanmardi, Kh. Nasrifar, S.H. Najibi, M. Moshfeghian, Economic evaluation of natural gas hydrate as an alternative for natural gas transportation, Appl. Therm. Eng., 25 (2005) 1708–1723.
  31. G.A. Al Bazedi, M.M. ElSayed, M. Amin, Comparison between reverse osmosis desalination cost estimation trends, J. Sci. Eng. Res., 2016 (2016) 56–62.
  32. P. Sahu, Techno-Feasibility Studies on an Alternative Liquefied Natural Gas (LNG) Regasification Process Integrated with Freeze Desalination, Birla Institute of Technology and Science, Pilani, India, 2019.
  33. T. He, J. Zhang, N. Mao, P. Linga, Organic Rankine cycle integrated with hydrate-based desalination for a sustainable energy–water nexus system, Appl. Energy, 291 (2021) 116839, doi:10.1016/j.apenergy.2021.116839.
  34. H. Lee, H. Ryu, J.-H. Lim, J.-O. Kim, J. Dong Lee, S. Kim, An optimal design approach of gas hydrate and reverse osmosis hybrid system for seawater desalination, Desal. Water Treat., 57 (2016) 9009–9017.