References
- L. Hossain, S.K. Sarker, M.S. Khan, Evaluation of present
and future wastewater impacts of textile dyeing industries in
Bangladesh, Environ. Dev., 26 (2018) 23–33.
- B. Liu, J. Wu, C. Cheng, J. Tang, M.F.S. Khan, J. Shen, Identification
of textile wastewater in water bodies by fluorescence excitation
emission matrix-parallel factor analysis and high-performance
size exclusion chromatography, Chemosphere, 216 (2019)
617–623.
- P.H. Nakhate, C.R. Gadipelly, N.T. Joshi, K.V. Marathe,
Engineering aspects of catalytic ozonation for purification of
real textile industry wastewater at the pilot scale, J. Ind. Eng.
Chem., 69 (2019) 77–89.
- K. Nadeem, G.T. Guyer, B. Keskinler, N. Dizge, Investigation
of segregated wastewater streams reusability with membrane
process for textile industry, J. Cleaner Prod., 228 (2019) 1437–1445.
- R. Shoukat, S.J. Khan, Y. Jamal, Hybrid anaerobic-aerobic
biological treatment for real textile wastewater,
J. Water Process
Eng., 29 (2019) 1–8.
- I. Khouni, G. Louhichi, A. Ghrabi, Assessing the performances
of an aerobic membrane bioreactor for textile wastewater
treatment: influence of dye mass loading rate and biomass
concentration, Process Saf. Environ. Prot., 135 (2020) 364–382.
- U. Sathya, Keerthi, M. Nithya, N. Balasubramanian, Evaluation
of advanced oxidation processes (AOPs) integrated membrane
bioreactor (MBR) for the real textile wastewater treatment,
J. Environ. Manage., 246 (2019) 768–775.
- E.B. Arikan, Z. Isik, H.D. Bouras, N. Dizge, Investigation of
immobilized filamentous fungi for treatment of real textile
industry wastewater using up flow packed bed bioreactor,
Bioresour. Technol. Rep., 7 (2019) 1–6.
- N. Bougdour, R. Tiskatine, I. Bakas, A. Assabbane, Photocatalytic
degradation of industrial textile wastewater using S2O82–/Fe2+
process, Mater. Today:. Proc., 22 (2020) 69–72.
- J. Núñez, M. Yeber, N. Cisternas, R. Thibaut, P. Medina,
C. Carrasco, Application of electrocoagulation for the
efficient pollutants removal to reuse the treated wastewater
in the dyeing process of the textile industry, J. Hazard. Mater.,
371 (2019) 705–711.
- M. Rajasimman, S.V. Babu, N. Rajamohan, Biodegradation of
textile dyeing industry wastewater using modified anaerobic
sequential batch reactor – start-up, parameter optimization
and performance analysis, J. Taiwan Inst. Chem. Eng., 72 (2017)
171–181.
- P. Kaur, J.P. Kushwaha, V.K. Sangal, Electrocatalytic oxidative
treatment of real textile wastewater in continuous reactor:
degradation pathway and disposability study, J. Hazard.
Mater., 346 (2018) 242–252.
- M. Mousazadeh, S.M. Alizadeh, Z. Frontistis, I. Kabdaşlı,
E. Karamati Niaragh, Z. Al Qodah, Z. Naghdali,
A.E.D. Mahmoud, M.A. Sandoval, E. Butler, M.M. Emamjomeh,
Electrocoagulation as a promising defluoridation technology
from water: a review of state of the art of removal mechanisms
and performance trends, Water (Switzerland), 13 (2021) 656,
doi: 10.3390/w13050656.
- H. Hayat, Q. Mahmood, A. Pervez, Z.A. Bhatti, S.A. Baig,
Comparative decolorization of dyes in textile wastewater
using biological and chemical treatment, Sep. Purif. Technol.,
154 (2015) 149–153.
- R. Kiani, F. Mirzaei, F. Ghanbari, R. Feizi, F. Mehdipour, Real
textile wastewater treatment by a sulfate radicals-advanced
oxidation process: peroxydisulfate decomposition using copper
oxide (CuO) supported onto activated carbon, J. Water Process
Eng., 38 (2020) 101623, doi: 10.1016/j.jwpe.2020.101623.
- P.R. Souza, G.L. Dotto, N.P.G. Salau, Artificial neural network
(ANN) and adaptive neuro-fuzzy interference system (ANFIS)
modelling for nickel adsorption onto agro-wastes and
commercial activated carbon,
J. Environ. Chem. Eng., 6 (2018)
7152–7160.
- P. Srinivasan, A. John Bosco, R. Kalaivizhi, J. Arockia Selvi,
P. Sivakumar, Adsorption isotherm and kinetic study of Direct
Orange 102 dyes on TNJ activated carbon, Mater. Today:. Proc.,
34 (2021) 389–394.
- A.M. Herrera-González, M. Caldera-Villalobos, A.A. Peláez-
Cid, Adsorption of textile dyes using an activated carbon and
crosslinked polyvinyl phosphonic acid composite, J. Environ.
Manage., 234 (2019) 237–244.
- S. Bener, S. Atalay, G. Ersöz, The hybrid process with ecofriendly
materials for the treatment of the real textile industry
wastewater, Ecol. Eng., 148 (2020) 1–12.
- M. Wakkel, B. Khiari, F. Zagrouba, Textile wastewater
treatment by agro-industrial waste: equilibrium modelling,
thermodynamics and mass transfer mechanisms of cationic
dyes adsorption onto low-cost lignocellulosic adsorbent,
J. Taiwan Inst. Chem. Eng., 96 (2019) 439–452.
- R.B. Gapusan, M.D.L. Balela, Adsorption of anionic methyl
orange dye and lead(II) heavy metal ion by polyanilinekapok
fiber nanocomposite, Mater. Chem. Phys., 243 (2020),
doi: 10.1016/j.matchemphys.2020.122682.
- N. Mahato, K. Sharma, M. Sinha, E.R. Baral, R. Koteswararao,
A. Dhyani, M. Hwan Cho, S. Cho, Bio-sorbents, industrially
important chemicals and novel materials from citrus processing
waste as a sustainable and renewable bioresource: a review,
J. Adv. Res., 23 (2020) 61–82.
- V.S.S. Munagapati, J.-C. Wen, C.-L. Pan, Y. Gutha, J.-H. Wen,
Enhanced adsorption performance of Reactive red 120 azo
dye from aqueous solution using quaternary amine modified
orange peel powder, J. Mol. Liq.,
285 (2019) 375–385.
- P.N.Y. Yek, W. Peng, C.C. Wong, R.K. Liew, Y.L. Ho, W.A. Wan
Mahari, E. Azwar, T.Q. Yuan, M. Tabatabaei,
M. Aghbashlo,
C. Sonne, S.S. Lam, Engineered biochar via microwave CO2
and steam pyrolysis to treat carcinogenic Congo red dye,
J. Hazard. Mater., 395 (2020) 122636, doi: 10.1016/j.jhazmat.2020.
122636.
- N. Tavker, M. Sharma, Designing of waste fruit peels extracted
cellulose supported molybdenum sulfide nanostructures for
photocatalytic degradation of RhB dye and industrial effluent,
J. Environ. Manage., 255 (2020) 1–12.
- M. Ahmed, F. Mashkoor, A. Nasar, Development,
characterization, and utilization of magnetized orange peel
waste as a novel adsorbent for the confiscation of crystal violet
dye from aqueous solution, Groundwater Sustainable Dev.,
10 (2020) 100–322.
- X. Chen, H. Li, W. Liu, X. Zhang, Z. Wu, S. Bi, W. Zhang,
H. Zhan, Effective removal of methyl orange and rhodamine
B from aqueous solution using furfural industrial processing
waste: furfural residue
as an eco-friendly biosorbent, Colloids
Surf., A, 583 (2019) 123976, doi: 10.1016/j.colsurfa.2019.123976.
- M.A. Ahmad, N.B. Ahmed, K.A. Adegoke, O.S. Bello,
Sorption studies of methyl red dye removal using lemon grass
(Cymbopogon citratus), Chem. Data Collect., 22 (2019) 1–11.
- S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma,
C.L. Lee, H.A. Chase, Microwave-assisted pyrolysis with
chemical activation, an innovative method to convert orange
peel into activated carbon with improved properties as dye
adsorbent, J. Cleaner Prod., 162 (2017) 1376–1387.
- F. Temesgen, N. Gabbiye, O. Sahu, Biosorption of Reactive red
dye (RRD) on activated surface of banana and orange peels:
economical alternative for textile effluent, Surf. Interfaces,
12 (2018) 151–159.
- M.H. Munawer, H.L. Chee, P.L. Kiew, Magnetized orange peel:
a realistic approach for methylene blue removal, Mater. Today:.
Proc., 47 (2021), doi: 10.1016/j.matpr.2021.02.796.
- P.S. Kumar, P.S.A. Fernando, R.T. Ahmed, R. Srinath,
M. Priyadharshini, A.M. Vignesh, A. Thanjiappan, Effect of
temperature on the adsorption of methylene blue dye onto
sulfuric acid–treated orange peel, Chem. Eng. Commun.,
201 (2014) 1526–1547.
- G.E. do Nascimento, M.M.M.B. Duarte, N.F. Campos,
O.R.S. da Rocha, V.L. da Silva, Adsorption of azo dyes using
peanut hull and orange peel: a comparative study, Environ.
Technol., 35 (2014) 1436–1453.
- S. Hashemian, K. Salari, H. Salehifar, Z. Yazdi, Removal of
azo dyes (Violet B and Violet 5R) from aqueous solution using
new activated carbon developed from orange peel, J. Chem.,
2013 (2013) 1–10.
- A. Guediri, A. Bouguettoucha, D. Chebli, N. Chafai, A. Amrane,
Molecular dynamic simulation and DFT computational
studies on the adsorption performances of methylene blue in
aqueous solutions by orange peel-modified phosphoric acid,
J. Mol. Struct., 1202 (2020) 127290, doi: 10.1016/j.molstruc.2019.
127290.
- V.S. Munagapati, D.-S. Kim, Adsorption of anionic azo dye
Congo red from aqueous solution by cationic modified orange
peel powder, J. Mol. Liq., 220 (2016) 540–548.
- K. Yoon, D.-W. Cho, A. Bhatnagar, H. Song, Adsorption of As(V)
and Ni(II) by Fe-Biochar composite fabricated by co-pyrolysis
of orange peel and red mud, Environ. Res., 188 (2020) 109809,
doi:10.1016/j.envres.2020.109809.
- S. Pavithra, G. Thandapani, Sugashini S, Sudha P.N.,
H.H. Alkhamis, A.F. Alrefaei, M.H. Almutairi, Batch adsorption
studies on surface tailored chitosan/orange peel hydrogel
composite for the removal of Cr(VI) and Cu(II) ions from
synthetic wastewater, Chemosphere, 271 (2021) 129415,
doi:10.1016/j.chemosphere.2020.129415.
- E. Safari, N. Rahemi, D. Kahforoushan, S. Allahyari, Copper
adsorptive removal from aqueous solution by orange peel
residue carbon nanoparticles synthesized by combustion
method using response surface methodology, J. Environ. Chem.
Eng., 7 (2019) 102847, doi: 10.1016/j.jece.2018.102847.
- S. Guiza, Biosorption of heavy metal from aqueous solution
using cellulosic waste orange peel, Ecol. Eng.,
99 (2017) 134–140.
- Y. Chen, H. Wang, W. Zhao, S. Huang, Four different kinds
of peels as adsorbents for the removal of Cd(II) from aqueous
solution: kinetics, isotherm and mechanism, J. Taiwan Inst.
Chem. Eng., 88 (2018) 146–151.
- R. Acosta, D. Nabarlatz, A. Sánchez-Sánchez, J. Jagiello,
P. Gadonneix, A. Celzard, V. Fierro, Adsorption of Bisphenol A
on KOH-activated tyre pyrolysis char, J. Environ. Chem. Eng.,
6 (2018) 823–833.
- R.B. Baird, A.D. Eaton, E.W. Rice, Standard Methods for the
Examination of Water and Wastewater, 2015. Available at:
https://doi.org/10.1016/B978-0-12-382165-2.00237-3
- M. de A. y D. Sostenible, Resolución 0631 del 17 de marzo de
2015, “Por La Cual Se Establ. Los Parámetros y Los Valores
Lpimite Máximos Permis. En Los Vertimientos Puntuales a
Cuerpos Agua Supeficiales y a Los Sist. Alcantarilladopúblico
y Se Dictan Otras Disposiciones.”, 2015, pp. 1–62.
- Environmental Protection Agency, Part 410 — Textile Mills Point
Source Category, Environ. Prot. Agency,
31 (2020) 175–177.
- M.C. Tomei, J. Soria Pascual, D. Mosca Angelucci, Analysing
performance of real textile wastewater
bio-decolorization under
different reaction environments, J. Cleaner Prod., 129 (2016)
468–477.
- M.C. Tomei, D. Mosca Angelucci, A.J. Daugulis, Sequential
anaerobic-aerobic decolorization of a real textile wastewater
in a two-phase partitioning bioreactor, Sci. Total Environ.,
573 (2016) 585–593.
- N. Nippatla, L. Philip, Electrocoagulation–floatation assisted
pulsed power plasma technology for the complete mineralization
of potentially toxic dyes and real textile wastewater, Process Saf.
Environ. Prot., 125 (2019) 143–156.
- N. Jaafarzadeh, A. Takdastan, S. Jorfi, F. Ghanbari, M. Ahmadi,
G. Barzegar, The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater
treatment, J. Mol. Liq., 256 (2018) 462–470.
- O.O. Oyebamiji, W.J. Boeing, F.O. Holguin, O. Ilori, O. Amund,
Green microalgae cultured in textile wastewater for biomass
generation and biodetoxification of heavy metals and
chromogenic substances, Bioresour. Technol. Rep., 7 (2019)
100247, doi: 10.1016/j.biteb.2019.100247.
- S. Jorfi, G. Barzegar, M. Ahmadi, R. Darvishi Cheshmeh Soltani,
N. Alah Jafarzadeh Haghighifard, A. Takdastan, R. Saeedi,
M. Abtahi, Enhanced coagulation-photocatalytic treatment
of Acid red 73 dye and real textile wastewater using UVA/
synthesized MgO nanoparticles, J. Environ. Manage., 177 (2016)
111–118.
- F.Y. Aljaberi, The most practical treatment methods for
wastewaters: a systematic review, Mesopotemia Environ. J.,
5 (2018) 1–28.
- H. Hansson, F. Kaczala, M. Marques, W. Hogland, Photo-Fenton
and Fenton oxidation of recalcitrant industrial wastewater
using nanoscale zero-valent iron, Int. J. Photoenergy, 2012
(2012) 531076, doi:10.1155/2012/531076.
- I.M.S. Pillai, A.K. Gupta, Performance analysis of a continuous
serpentine flow reactor for electrochemical oxidation of
synthetic and real textile wastewater: energy consumption,
mass transfer coefficient and economic analysis, J. Environ.
Manage., 193 (2017) 524–531.
- E. Sanmuga Priya, P. Senthamil Selvan, Water hyacinth
(Eichhornia crassipes) – an efficient and economic adsorbent for
textile effluent treatment – a review, Arabian J. Chem., 10 (2017)
S3548–S3558.
- N.R. Khandaker, I. Afreen, D.S. Diba, F.B. Huq, T. Akter,
Treatment of textile wastewater using calcium hypochlorite
oxidation followed by waste iron rust aided rapid filtration for
color and COD removal for application in resources challenged
Bangladesh, Groundwater Sustainable Dev., 10 (2020) 100342,
doi:10.1016/j.gsd.2020.100342.
- S. Bener, Ö. Bulca, B. Palas, G. Tekin, S. Atalay, G. Ersöz,
Electrocoagulation process for the treatment of real textile
wastewater: effect of operative conditions on the organic
carbon removal and kinetic study, Process Saf. Environ. Prot.,
129 (2019) 47–54.
- G.E. do Nascimento, M.M.M.B. Duarte, N.F. Campos,
O.R.S. da Rocha, V.L. da Silva, Adsorption of azo dyes using
peanut hull and orange peel: a comparative study, Environ.
Technol., 35 (2014) 1436–1453.
- H. Benaïssa, Removal of acid dyes from aqueous solutions
using orange peel as a sorbent material, Int. J. Environ. Pollut.,
34 (2008) 71–82.
- F.F. Avelar, M.L. Bianchi, M. Gonçalves, E.G. da Mota, The use of
piassava fibers (Attalea funifera) in the preparation of activated
carbon, Bioresour. Technol., 101 (2010) 4639–4645.
- G. Stella Mary, P. Sugumaran, S. Niveditha, B. Ramalakshmi,
P. Ravichandran, S. Seshadri, Production, characterization and
evaluation of biochar from pod (Pisum sativum), leaf (Brassica
oleracea) and peel
(Citrus sinensis) wastes, Int. J. Recycl. Org.
Waste Agric., 5 (2016) 43–53.
- B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by
biochars of orange peels with different pyrolytic temperatures,
Chemosphere, 76 (2009) 127–133.
- A.G. Adeniyi, J.O. Ighalo, D.V. Onifade, Biochar from the
thermochemical conversion of orange (Citrus sinensis) peel and
albedo: product quality and potential applications, Chem. Afr.,
3 (2020) 439–448.
- T.K. Oh, B.S. Choi, Y. Shinogi, J. Chikushi, Characterization
of biochar derived from three types of biomass,
J. Fac. Agric.
Kyushu Univ., 57 (2012) 61–66.