References

  1. V.L. Singer, T.E. Lawlor, S. Yue, Comparison of SYBR Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test), Mutat. Res., 439 (1999) 37–47.
  2. S. Thititananukiji, R. Vejaratpimol, T. Pewnim, A.W. Fast, Ethidium bromide nuclear staining and fluorescence microscopy: an alternative method for triploidy detection in fish, J. World Aquacult Soc., 27 (2010) 213–217.
  3. M. Waring, Ethidium and Propidium, J.W. Corcoran, F.E. Hahn, J.F. Snell, K.L. Arora, Eds., Mechanism of Action of Antimicrobial and Antitumor Agents. Antibiotics 3, Springer, Berlin, 1975, pp. 141–165. Available at: https://doi. org/10.1007/978-3-642-46304-4_10
  4. S. Amirijavid, M. Mohammadi, Toxicity of the ethidium bromide on germination of wheat, alfalfa and tomato, Int. J. Agric. Soil Sci., 2 (2014) 69–74.
  5. M. Rajabi, O. Moradi, K. Zare, Kinetics adsorption study of the ethidium bromide by graphene oxide as adsorbent from aqueous matrices, Int. Nano Lett., 7 (2017) 35–41.
  6. B. Heibati, K. Yetilmezsoy, M.A. Zazouli, S. Rodriguez-Couto, I. Tyagi, S. Agarwal, V.K. Gupta, Adsorption of ethidium bromide (EtBr) from aqueous solutions by natural pumice and aluminium-coated pumice, J. Mol. Liq., 213 (2016) 41–47.
  7. A. Fakhri, Assessment of Ethidium bromide and Ethidium monoazide bromide removal from aqueous matrices by adsorption on cupric oxide nanoparticles, Ecotoxicol. Environ. Saf., 104 (2014) 386–392.
  8. O. Moradi, A. Fakhri, S. Adami, S. Adami, Isotherm, thermodynamic, kinetics, and adsorption mechanism studies of Ethidium bromide by single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube, J. Colloid Interface Sci., 395 (2013) 224–229.
  9. R.G. Harris, J.D. Wells, B.B. Johnson, Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces, Colloids Surf., A, 180 (2001) 131–140.
  10. F. Najafi, M. Norouzi, K. Zare, A. Fakhri, Removal of ethidium bromide by carbon nanotube in aqueous solution: isotherms, equilibrium mechanism studies, and its comparison with nanoscale of zero valent iron as adsorbent, J. Nanostruct. Chem., 3 (2013) 60, doi: 10.1186/2193-8865-3-60.
  11. G.D. Yuan, B.K.G. Theng, G.J. Churchman, W.P. Gates, Clays and Clay Minerals for Pollution Control, F. Bergaya, G. Lagaly, Eds., Handbook of Clay Science, 2nd ed., Elsevier, Amsterdam, 2013, pp. 587–644. Available at: https://doi.org/10.1016/ S1572-4352(05)01020-2
  12. B. Sarkar, R. Rusmin, U.C. Ugochukwu, R. Mukhopadhyay, K.M. Manjaiah, Modified Clay Minerals for Environmental Applications, M. Mercurio, B. Sarkar, A. Langella, Eds., Modified Clay and Zeolite Nanocomposite Materials, Elsevier, Amsterdam, 2019, pp. 113–127. Available at:
    https://doi. org/10.1016/B978-0-12-814617-0.00003-7
  13. Z. Li, P.-H. Chang, W.-T. Jiang, Y.-J. Liu, Enhanced removal of ethidium bromide (EtBr) from aqueous solution using rectorite, J. Hazard. Mater., 384 (2020) 121254, doi: 10.1016/j. jhazmat.2019.121254.
  14. L. Wang, Z. Li, X. Zhang, G. Lv, X. Wang, High capacity ethidium bromide removal by montmorillonites, Korean J. Chem. Eng., 37 (2020) 2202–2208.
  15. Z. Zimmermann, H.W. Zimmermann, pKa-Werte von Ethidiumbromid und 7-Amino-9-phenyl-10-äthylphenanthridinium-bromid, Zeitschrift für Naturforschung C, 31 (1976) 656–660.
  16. S.J. Chipera, D.L. Bish, Baseline studies of the Clay Minerals Society source clays: powder X-ray diffraction analyses, Clays Clay Miner., 49 (2001) 398–409.
  17. A. Umran Dogan, M. Dogan, M. Onal, Y. Sarikaya, A. Aburub, D.E. Wurster, Baseline studies of the Clay Minerals Society source clays: specific surface area by the Brunauer Emmett Teller (BET) method, Clays Clay Miner., 54 (2006) 62–66.
  18. G. Villemure, Effect of negative surface-charge densities of smectite clays on the adsorption isotherms of racemic and enantiomeric tris(2,2’-bipyridyl)ruthenium(II) chloride, Clays Clay Miner., 38 (1990) 622–630.
  19. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  20. Y. Park, G.A. Ayoko, E. Horváth, R. Kurdi, J. Kristof, R.L. Frost, Structural characterisation and environmental application of organoclays for the removal of phenolic compounds, J. Colloid Interface Sci., 393 (2013) 319–334.
  21. J. Carbajo, C. Adán, A. Rey, A. Martínez-Arias, A. Bahamonde, Optimization of H2O2 use during the photocatalytic degradation of ethidium bromide with TiO2 and iron-doped TiO2 catalysts, Appl. Catal., B, 102 (2011) 85–93.
  22. M. Doğan, M. Alkan, A. Türkyilmaz, Y. Özdemir, Kinetics and mechanism of removal of methylene blue by adsorption onto perlite, J. Hazard Mater., 109 (2004) 141–148.
  23. R.A. Figueroa, A. Leonard, A.A. MacKay, Modeling tetracycline antibiotic sorption to clays, Environ. Sci. Technol., 38 (2004) 476–483.
  24. P.-H. Chang, Z. Li, T.-L. Yu, S. Munkhbayer, T.-H. Kuo, Y.-C. Hung, J.-S. Jean, K.-H. Lin, Sorptive removal of tetracycline from water by palygorskite, J. Hazard. Mater., 165 (2009) 148–155.
  25. Z. Li, P.-H. Chang, W.-T. Jiang, J.-S. Jean, H. Hong, L. Liao, Removal of diphenhydramine from water by swelling clay minerals, J. Colloid Interface Sci., 360 (2011) 227–232.
  26. M. Rajabi, O. Moradi, M. Sillanpää, K. Zare, A.M. Asiri, S. Agarwal, V.K. Gupta, Removal of toxic chemical ethidium monoazide bromide using graphene oxide: thermodynamic and kinetics study, J. Mol. Liq., 29 (2019) 111484, , doi: 10.1016/j. molliq.2019.111484.
  27. R. Sulthana, S.N. Taqui, F. Zameer, U.T. Syed, A.A. Syed, Adsorption of ethidium bromide from aqueous solution onto nutraceutical industrial fennel seed spent: kinetics and thermodynamics modeling studies, Int. J. Phytorem., 20 (2018) 1075–1086.
  28. D. Vasudevan, G.L. Bruland, B.S. Torrance, V.G. Upchurch, A.A. MacKay, pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption, Geoderma, 151 (2009) 68–76.
  29. M. Stadler, P.W. Schindler, Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite, Clays Clay Miner., 41 (1993) 288–296.
  30. P.-H. Chang, W.-T. Jiang, Z. Li, C.-Y. Kuo, J.-S. Jean, W.-R. Chen, G. Lv, Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2), J. Hazard. Mater., 277 (2014) 44−52.
  31. C.-J. Wang, Z. Li, W.-T. Jiang, J.-S. Jean, C.-C. Liu, Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite, J. Hazard. Mater., 183 (2010) 309–314.
  32. H.H. Eldaroti, S.A. Gadir, M.S. Refat, A.M. Adam, Preparation, spectroscopic and thermal characterization of new charge-transfer complexes of ethidium bromide with π-acceptors. In vitro biological activity studies, Spectrochim. Acta, Part A, 109 (2013) 259–271.
  33. B. Sarkar, M. Megharaj, Y. Xi, R. Naidu, Surface charge characteristics of organo-palygorskites and adsorption of p-nitrophenol in flow-through reactor system, Chem. Eng. J., 185–186 (2012) 35–43.
  34. G.W. Brindley, G. Brown, Crystal Structures of Clay Minerals and their X-ray Identification, Mineralogical Society, London, 1980.
  35. P. Quillardet, M. Hofnung, O. Bensaude, Ethidium bromide and safety—readers suggest alternative solutions, Trends Genetics, 4 (1988) 89–90.
  36. F.J. Green, Sigma-Aldrich Handbook of Stains, Dyes, and Indicators, Aldrich Chemical Company, Milwaukee, Wisconsin, 1990.
  37. J. Madejová, P. Komadel, Baseline studies of the Clay Minerals Society source clays: infrared methods, Clays Clay Miner., 49 (2001) 410–432.
  38. J. Swaminathan, M. Ramalingam, V. Sethuraman, G.N. Sundaraganesan, S. Sebastian, Vibrational spectroscopic studies and DFT calculations of 4-aminoantipyrine, Spectrochim. Acta, Part A, 73 (2009) 593–600.
  39. D. Garfinkel-Shweky, S. Yariv, Metachromasy in clay-dye systems: the adsorption of acridine orange
    by Na-saponite, Clay Miner., 32 (1997) 653–663.
  40. D. Garfinkel-Shweky, S. Yariv, The determination of surface basicity of the oxygen planes of expanding clay minerals by acridine orange, J. Colloid Interface Sci., 188 (1997) 168–175.
  41. J. Bujdák, N. Iyi, Visible spectroscopy of cationic dyes in dispersions with reduced-charge montmorillonites, Clays Clay Miner., 50 (2002) 446–454.
  42. J. Bujdák, Effect of the layer charge of clay minerals on optical properties of organic dyes. A review, Appl. Clay Sci., 34 (2006) 58–73.
  43. A.N. Veselkov, L.N. Dymant, S.F. Baranovskiy, The study of self-association of ethidium bromide in an aqueous solution by H-NMR spectroscopy, Khim Fizika, 13 (1994) 72–80.
  44. M. Guenza, C. Cuniberti, The ethidium bromide dimer. Absorption and fluorescence properties in aqueous solutions, Spectrochim. Acta, Part A, 44 (1988) 1359–1364.
  45. R. Cohen, S. Yariv, Metachromasy in clay minerals. Sorption of acridine orange by montmorillonite, J. Chem. Soc., Faraday Trans. 1 F, 80 (1984) 1705–1715.
  46. J. Cenens, R.A. Schoonheydt, Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension, Clays Clay Miner., 36 (1988) 214–224.
  47. J. Bujdák, M. Janek, J. Madejova, P. Komadel, Methylene blue interactions with reduced-charge smectites, Clays Clay Miner., 49 (2001) 244–254.
  48. G. Thomas, B. Roques, Proton magnetic resonance studies of ethidium bromide and its sodium borohydride reduced derivative, FEBS Lett., 26 (1972) 169–175.