References

  1. M. Elhag, A. Psilovikos, I. Manakos, K. Perakis, Application of the SEBS water balance model in estimating daily evapotranspiration and evaporative fraction from remote sensing data over the Nile Delta, Water Resour. Manage., 25 (2011) 2731–2742.
  2. J. Cristóbal, M.C. Anderson, Validation of a Meteosat Second Generation solar radiation dataset over the northeastern Iberian Peninsula, Hydrol. Earth Syst. Sci., 17 (2013) 163–175.
  3. M. Mohammadian, R. Arfania, H. Sahour, Evaluation of SEBS algorithm for estimation of daily evapotranspiration using landsat-8 dataset in a Semi-Arid Region of Central Iran, Open J. Geol., 7 (2017) 335–347.
  4. N. Ghilain, A. Arboleda, F. Gellens-Meulenberghs, Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data, Hydrol. Earth Syst. Sci., 15 (2011) 771–786.
  5. S.Z. Losgedaragh, M. Rahimzadegan, Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran), J. Hydrol., 561 (2018) 523–531.
  6. M. Awais, W. Li, M.J.M. Cheema, Q.U. Zaman, A. Shaheen, B. Aslam, W. Zhu, M. Ajmal, M. Faheem, S. Hussain, A.A. Nadeem, M.M. Afzal, C. Liu, UAV-based remote sensing in plant stress imagine using high-resolution thermal sensor for digital agriculture practices: a meta-review, Int. J. Environ. Sci. Technol., (2022) 1–18, doi:10.1007/s13762-021-03801-5.
  7. M. Awais, W. Li, M. Cheema, S. Hussain, A. Shaheen, B. Aslam, C. Liu, A. Ali, Assessment of optimal flying height and timing using high-resolution unmanned aerial vehicle images in precision agriculture, Int. J. Environ. Sci. Technol., (2021) 1–18.
  8. M. Rodell, P. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, The Global Land Data Assimilation System, Bull. Am. Meteorol., 85 (2004) 381–394.
  9. J.P. Moiwo, F. Tao, W. Lu, Analysis of satellite-based and in situ hydro‐climatic data depicts water storage depletion in North China Region, Hydrol. Processes, 27 (2013) 1011–1020.
  10. E. Forootan, R. Rietbroek, J. Kusche, M.A. Sharifi, J.L. Awange, M. Schmidt, P. Omondi, J. Famiglietti, Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data, Remote Sens. Environ., 140 (2014) 580–595.
  11. A. Elbeltagi, N. Kumari, J.K. Dharpure, A. Mokhtar, K. Alsafadi, M. Kumar, B. Mehdinejadiani, H. Ramezani Etedali, Y. Brouziyne, T.J.W. Islam, Prediction of combined terrestrial evapotranspiration index (CTEI) over large river basin based on machine learning approaches, Water, 13 (2021) 547, doi: 10.3390/w13040547.
  12. J. Won, J. Seo, J. Lee, O. Lee, S. Kim, Vegetation drought vulnerability mapping using a copula model of vegetation index and meteorological drought index, Remote Sens. Environ., 13 (2021) 5103, doi:10.3390/rs13245103.
  13. E.P. Glenn, P.L. Nagler, A.R. Huete, Vegetation index methods for estimating evapotranspiration by remote sensing, Surv. Geophys., 31 (2010) 531–555.
  14. E. Bari, N.J. Nipa, B. Roy, Association of vegetation indices with atmospheric and biological factors using MODIS time series products, Environ. Challenges, 5 (2021) 100376, doi: 10.1016/j. envc.2021.100376.
  15. F. Hall, P. Sellers, First international satellite land surface climatology project (ISLSCP) field experiment (FIFE) in 1995, J. Geophys. Res.: Atmos., 100 (1995) 25383–25395.
  16. M. Chiesi, B. Rapi, P. Battista, L. Fibbi, B. Gozzini, R. Magno, A. Raschi, F. Maselli, Combination of ground and satellite data for the operational estimation of daily evapotranspiration, Eur. J. Remote Sens., 46 (2013) 675–688.
  17. Y. Zhang, S. Yang, W. Ouyang, H. Zeng, M. Cai, Applying multi-source remote sensing data on estimating ecological water requirement of grassland in ungauged region, Procedia Environ. Sci., 2 (2010) 953–963.
  18. H. Wang, Z. Li, L. Cao, R. Feng, Y. Pan, Response of NDVI of natural vegetation to climate changes and drought in China, Land, 10 (2021) 966, doi: 10.3390/land10090966.
  19. C. Domenikiotis, M. Spiliotopoulos, E. Tsiros, N. Dalezios, Early cotton production assessment in Greece based on a combination of the drought Vegetation Condition Index (VCI) and the Bhalme and Mooley Drought Index (BMDI), Int. J. Remote Sens., 25 (2004) 5373–5388.
  20. J. Park, J. Baik, M. Choi, Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia, Catena, 156 (2017) 305–314.
  21. M. Awais, W. Li, S. Hussain, M.J.M. Cheema, W. Li, R. Song, C. Liu, Comparative evaluation of land surface temperature images from unmanned aerial vehicle and satellite observation for agricultural areas using in situ data, Agriculture, 12 (2022) 184, doi: 10.3390/agriculture12020184.
  22. M. Spiliotopoulos, A. Loukas, Hybrid methodology for the estimation of crop coefficients based on satellite imagery and ground-based measurements, Water, 11 (2019) 1364, doi: 10.3390/w11071364.
  23. J.A. Sobrino, N. Souza da Rocha, D. Skoković, P. Suélen Käfer, R. López-Urrea, J.C. Jiménez-Muñoz, S.B. Alves Rolim, Evapotranspiration estimation with the S-SEBI method from Landsat 8 data against Lysimeter measurements at the Barrax site, Spain, Remote Sens., 13 (2021) 3686, doi: 10.3390/rs13183686.
  24. L. Caturegli, S. Matteoli, M. Gaetani, N. Grossi, S. Magni, A. Minelli, G. Corsini, D. Remorini, M. Volterrani, Effects of water stress on spectral reflectance of bermudagrass, Sci. Rep., 10 (2020) 1–12.
  25. N. Jovanovic, C.L. Garcia, R.D. Bugan, I. Teich, C.M.G. Rodriguez, Validation of remotely-sensed evapotranspiration and NDWI using ground measurements at Riverlands, South Africa, Water S.A., 40 (2014) 211–220.
  26. B. Almutairi, A. El Battay, M.A. Belaid, N.A.H. Musa, Comparative study of SAVI and NDVI vegetation indices in Sulaibiya Area (Kuwait) using worldview satellite imagery, Int. J. Geosci. Geomat., 1 (2013) 50–53.
  27. D.P. Groeneveld, W.M. Baugh, Correcting satellite data to detect vegetation signal for eco-hydrologic analyses, J. Hydrol., 344 (2007) 135–145.
  28. S.H. Mahmoud, Delineation of potential sites for groundwater recharge using a GIS-based decision support system, Environ. Earth Sci., 72 (2014) 3429–3442.
  29. S. Chowdhury, M. Al-Zahrani, Characterizing water resources and trends of sector wise water consumptions in Saudi Arabia, J. King Saud Univ. Eng. Sci., 27 (2015) 68–82.
  30. S. Chowdhury, M. Al-Zahrani, A. Abbas, Implications of climate change on crop water requirements in arid region: an example of Al-Jouf, Saudi Arabia, J. King Saud Univ. Eng. Sci., 28 (2016) 21–31.
  31. O.M. Lopez Valencia, K. Johansen, B.J.L. Aragon Solorio, T. Li, R. Houborg, Y. Malbeteau, S. Almashharawi,
    M. Altaf, E.M. Fallatah, H.P. Dasari, Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling and a satellite-model fusion approach, Hydrol. Earth Syst. Sci., 24 (2020) 5251–5277.
  32. M.H. Jahangir, M. Arast, Estimation of surface soil moisture based on improved multi-index models and surface energy balance system, Nat. Resour. Res., 30 (2021) 789–804.
  33. A. Nagy, A. Szabó, O.D. Adeniyi, J. Tamás, Wheat yield forecasting for the Tisza River catchment using Landsat 8 NDVI and SAVI time series and reported crop statistics, Agronomy, 11 (2021) 652, doi:10.3390/agronomy11040652.
  34. J.M. Norman, M.C. Anderson, W.P. Kustas, A.N. French, J. Mecikalski, R. Torn, G.R. Diak, T. Schmugge,
    B.C.W. Tanner, Remote sensing of surface energy fluxes at 101‐m pixel resolutions, Water Resour. Res., 39 (2003), doi: 10.1029/2002WR001775.
  35. F. Firouzi, T. Tavosi, P. Mahmoudi, Investigating the sensitivity of NDVI and EVI vegetation indices to dry and wet years in arid and semi-arid regions (Case study: Sistan plain, Iran), Sci. Res. Quart. Geogr. Data, 28 (2019) 163–179.
  36. M.T. Schnur, H. Xie, X. Wang, Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi-arid region of southwestern USA, Ecol. Inform., 5 (2010) 400–409.
  37. J. Wang, J.-f. Huang, X.-z. Wang, M.-t. Jin, Z. Zhou, Q.-y. Guo, Z.-w. Zhao, W.-j. Huang, Y. Zhang, X.-d. Song, Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images, J. Zhejiang Univ. Sci. B, 16 (2015) 832–844.
  38. V. Chowdary, R.V. Chandran, N. Neeti, R. Bothale, Y. Srivastava, P. Ingle, D. Ramakrishnan, D. Dutta, A. Jeyaram, J. Sharma, Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS, Agric. Water Manage., 95 (2008) 754–766.
  39. H. Hashim, Z. Abd Latif, N.A. Adnan, Urban Vegetation Classification with NDVI Thresold Value Method with Very High Resolution (VHR) Pleiades Imagery, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W16, 6th International Conference on Geomatics and Geospatial Technology (GGT 2019), 1–3 October 2019, Kuala Lumpur, Malaysia, 2019, pp. 237–240.
  40. Y. Julien, J.A. Sobrino, Introducing the time series change visualization and interpretation (TSCVI) method for the interpretation of global NDVI changes, Int. J. Appl. Earth Obs., 96 (2021) 102268, doi:10.1016/j.jag.2020.102268.
  41. S.S. Naif, D.A. Mahmood, M.H. Al-Jiboori, Seasonal normalized difference vegetation index responses to air temperature and precipitation in Baghdad, Open Agric., 5 (2020) 631–637.
  42. J. Mallick, M.K. AlMesfer, V.P. Singh, I.I. Falqi, C.K. Singh, M. Alsubih, N.B. Kahla, Evaluating the NDVI–rainfall relationship in Bisha Watershed, Saudi Arabia using nonstationary modeling technique, Atmosphere, 12 (2021) 593, doi: 10.3390/atmos12050593.
  43. N.R. Wilson, L.M. Norman, M. Villarreal, L. Gass, R. Tiller, A. Salywon, Comparison of remote sensing indices for monitoring of desert cienegas, Arid. Land Res. Manage., 30 (2016) 460–478.
  44. V. Vani, V.R. Mandla, Comparative Study of NDVI and SAVI vegetation indices in Anantapur district semi-arid areas, Int. J. Civ. Eng. Technol., 8 (2017) 559–566.
  45. Z. Zhen, S. Chen, T. Yin, E. Chavanon, N. Lauret, J. Guilleux, M. Henke, W. Qin, L. Cao, J. Li, Using the negative soil adjustment factor of soil adjusted vegetation index (SAVI) to resist saturation effects and estimate leaf area index (LAI) in dense vegetation areas, Sensors, 21 (2021) 2115, doi: 10.3390/ s21062115.
  46. H. Ren, G. Zhou, F. Zhang, Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands, Remote Sens. Environ., 209 (2018) 439–445.
  47. C. Polykretis, M.G. Grillakis, D.D. Alexakis, Exploring the impact of various spectral indices on land cover change detection using change vector analysis: a case study of Crete Island, Greece, Remote Sens. Environ., 12 (2020) 319, doi: 10.3390/rs12020319.
  48. K. Katarzyna, S. Justyna, S. Jakub, S. Marcin, Estimation of bare soil moisture from remote sensing indices in the 0.4–2.5 mm spectral range, Trans. Aerosp. Res., 2021 (2021) 1–11.
  49. V.S. da Silva, G. Salami, M.I.O. da Silva, E.A. Silva, J.J. Monteiro Junior, E. Alba, Methodological evaluation of vegetation indexes in land use and land cover (LULC) classification, Geol. Ecol. Landscapes, 4 (2020) 159–169.
  50. L. Ji, L. Zhang, B. Wylie, Analysis of dynamic thresholds for the normalized difference water index, Photogramm. Eng. Remote Sens., 75 (2009) 1307–1317.
  51. X. Wu, Y. Xu, J. Shi, Q. Zuo, T. Zhang, L. Wang, X. Xue, A.J.A. Ben-Gal, F. Meteorology, Estimating stomatal conductance and evapotranspiration of winter wheat using a soil-plant water relations-based stress index, Agric. For. Meteorol., 303 (2021) 108393, doi: 10.1016/j.agrformet.2021.108393.
  52. D. Marusig, F. Petruzzellis, M. Tomasella, R. Napolitano, A. Altobelli, A. Nardini, Correlation of field-measured and remotely sensed plant water status as a tool to monitor the risk of drought-induced forest decline, Forests, 11 (2020) 77, doi: 10.3390/f11010077.
  53. M. Awais, W. Li, M.J.M. Cheema, S. Hussain, T.S. AlGarni, C. Liu, A. Ali, Remotely sensed identification of canopy characteristics using UAV-based imagery under unstable environmental conditions, Environ. Technol. Innovation, 22 (2021) 101465, doi: 10.1016/j.eti.2021.101465.
  54. M. Elhag, Understanding of photosynthetically active radiation index under soil salinity variation using remote sensing practices in arid environments, Desal. Water Treat., 112 (2018) 171–178.
  55. M. Elhag, J. Bahrawi, S. Boteva, Input/output inconsistencies of daily evapotranspiration conducted empirically using remote sensing data in arid environments, Open Geosci., 13 (2021) 321–334.