References

  1. Z. Aghalari, H.-U. Dahms, M. Sillanpää, J.E. Sosa-Hernandez, R. Parra-Saldívar, Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review, Global. Health, 16 (2020) 1–11, doi:10.1186/s12992-020-0546-y.
  2. Ł. Jałowiecki, J.M. Chojniak, E. Dorgeloh, B. Hegedusova, H. Ejhed, J. Magnér, G.A. Płaza, Microbial community profiles in wastewaters from onsite wastewater treatment systems technology, PLoS One, 25 (2016) 1–15, doi: 10.1371/journal. pone.0147725.
  3. I. Kania-Surowiec, Biological beds in the treatment of sewage from recycled plastics, Inżynieria Ekologiczna, 32 (2013) 74–84.
  4. M. Piasny, Złoża biologiczne, oczyszczalnie ścieków bytowych, Magazyn instalatora, 5 (2012) 56–57.
  5. M.J. Nelson, G. Nakhla, J. Zhu, Fluidized-bed bioreactor applications for biological wastewater treatment:
    a review of research and developments, Engineering, 3 (2017) 330–342.
  6. N. Fernández, E.E. Díaz, R. Amils, J.L. Sanz, Analysis of microbial community during biofilm development
    in an anaerobic wastewater treatment reactor, Microbiol. Ecol., 56 (2008) 121–132.
  7. M. Makowska, M. Spychała, Błażejewski, Treatment of septic tank effluent in moving bed biological reactors with intermittent aeration, Pol. J. Environ. Stud., 18 (2009) 1051–1057.
  8. S. Zajchowski, J. Ryszkowska, Kompozyty polimerowodrzewne - charakterystyka ogólna oraz ich otrzymywanie z materiałów odpadowych, Polimery, 10 (2009) 754–762.
  9. E. Łobos-Moysa, M. Bodzek, A. Śliwa, Influence of modified porous aggregates on the efficiency of treatment by trickkling filter systems, Proc. ECOpole, 10 (2016) 693–698.
  10. G. Andreottola, R. Foladori, M. Ragazzi, F. Tatàno, Experimental comparison between MBBR and activated sludge system for the treatment of municipal wastewater, Water Sci. Technol., 41 (2000) 375–382.
  11. G. Mangesh, I. Ashwini, Moving bed biofilm reactor: a best option for wastewater treatment, Int. J. Sci. Dev. Res., 3 (2015) 1094–1096.
  12. Z. Li, E. Yu, K. Zhang, W. Gong, Y. Xia, J. Tian, G. Wang, J. Xie, Water treatment effect, microbial community structure, and metabolic characteristics in a field-scale aquaculture wastewater treatment system, Front. Microbiol., 11 (2020) 1–13, doi: 10.3389/fmicb.2020.00930.
  13. B. Zhang, X. Xu, L. Zhu, Activated sludge bacterial communities of typical wastewater treatment plants: distinct genera identification and metabolic potential differential analysis, AMB Express, 8 (2018) 1–14, doi:10.1186/s13568-018-0714-0.
  14. T.P. Sathishkumar, P. Navaneethakrishnan, S. Shankar, R. Rajasekar, N. Rajini, Characterization of natural fiber and composites – a review, J. Reinf. Plast. Compos., 32 (2013) 1457–1476.
  15. M.R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, S. Pradeep, Characterization and properties of natural fiber polymer composites: a comprehensive review, J. Cleaner Prod., 172 (2018) 566–581.
  16. T. Leiknes, H. Ødegaard, The development of a biofilm membrane bioreactor, Desalination, 202 (2007) 135–143.
  17. A. Barwal, R. Chaudhary, To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: a review, Rev. Environ. Sci. Biotechnol., 13 (2014) 285–299.
  18. J.A. Kawan, H.A. Hasan, F. Suja, O.B. Jaafar, R. Abd-Rahman, A review on sewage treatment and polishing using moving bed bioreactor (MBBR), Int. J. Eng. Sci. Technol., 8 (2016) 1098–1120.
  19. A. Das, R.N. Naga, Activated sludge process with MBBR technology at ETP, Q. J. Indian Pulp Paper Tech. Assoc., 23 (2011) 135–137.
  20. I. Kruszelnicka, D. Ginter-Kramarczyk, E. Karpezo, Moving beds in wastewater treatment technology – history, application and prospects, Instal, 5 (2014) 64–67.
  21. M. Litwińska, D. Ginter-Kramarczyk, I. Kruszelnicka, The Moving Bed Technology as the Future in the Modernization of Sewage Treatment Plants in Poland, I. Skoczko, J. Piekutin, I. Barszczewska, N. Woroniecka, Eds., Inżynieria środowiska - młodym okiem, Monografia tom 21. Rozdział: ścieki i osady ściekowe. Białystok, 21 (2016) 103–125.
  22. I. Kruszelnicka, D. Ginter-Kramarczyk, M. Litwińska, P. Poszwa, Shapes of carriers in MBBR technology, Instal, 6 (2016) 55–59.
  23. I. Kruszelnicka, D. Ginter-Kramarczyk, M. Michałkiewicz, S. Zajchowski, A. Kloziński, J. Tomaszewska, The use of woodpolymer composites in a moving bed biofilm reactor technology, Polimery, 5 (2014) 423–426.
  24. I. Kruszelnicka, D. Ginter-Kramarczyk, M. Michałkiewicz, S. Zajchowski, The Use of Polymer-Wood Composites as Carriers of Biological Membranes in Wastewater Treatment Technology, T. Klepka, Ed., Nowoczesne materiały polimerowe i ich przetwórstwo - Część 2, Politechnika Lubelska, Lublin, 1 (2015) 87–202.
  25. I. Kruszelnicka, D. Ginter-Kramarczyk, M. Michałkiewicz, A. Kloziński, S. Zajchowski, P. Jakubowska,
    J. Tomaszewska, Polymer-wood composites in the suspended moving bed technology, Polimery, 10 (2014) 739–746.
  26. I. Kruszelnicka, D. Ginter-Kramarczyk, A. Kloziński, J. Zembrzuska, S. Zajchowski, Analysis of the Influence of Activated Sludge on the Mechanical Properties of Polymer-Wood Composites, Z. Dymaczewski,
    J. Jeż-Walkowiak, Eds., Zaopatrzenie w wodę, jakość i ochrona wód. Poznań, (2012) 659–670.
  27. I. Kruszelnicka, M. Michałkiewicz, D. Ginter-Kramarczyk, Quantitative and Qualitative Evaluation of Microorganisms Inhabiting Polymer-Wood Composites Tested in Activated Sludge, Z. Dymaczewski,
    J. Jeż-Walkowiak, Eds., Zaopatrzenie w wodę, jakość i ochrona wód – odnowa wód – ochrona wód. Poznań, 2014, pp. 649–657.
  28. I. Kruszelnicka, D. Ginter-Kramarczyk, P. Poszwa, T. Stręk, Influence of MBBR carriers’ geometry on its flow characteristics, Chem. Eng. Process., 130 (2018) 134–139.
  29. V.S. Ajaev, T. Gambaryan-Roisman, P. Stephan, Static and dynamic contact angles of evaporating liquids on heated surfaces, J. Colloid Interface Sci., 342 (2010) 550–558.
  30. M. Żenkiewicz, Adhesion and Modification of the Surface Layer of Macromolecular Materials, WNT Warszawa, 2000.
  31. M. Żenkiewicz, New method of analysis of the surface free energy of polymeric materials calculated with Owens-Wendt and Neumann methods, Polimery, 51 (2006) 584–587.
  32. C. Goode, Understanding Biosolids Dynamics in a Moving Bed Biofilm Reactor, A Thesis Submitted in Conformity with the Requirements for the Degree of Doctor of Philosophy Graduate Department of Chemical Engineering and Applied Chemistry, University of Toronto, 2010, pp. 1–216.
  33. G.T.H. Ooi, M.E. Casas, H.R. Andersen, K. Bester, Transformation products of clindamycin in moving bed biofilm reactor (MBBR), Water Res., 113 (2017) 139–148.
  34. A.D. Santos, R.C. Martins, R.M. Quinta-Ferreira, L.M. Castro, Moving bed biofilm reactor (MBBR) for dairy wastewater treatment, Energy Rep., 6 (2020) 340–344.
  35. M. Sobczyk, Microorganisms on fixed bed bioreactors in hybrid wastewater treatment plant, Forum Eksploatatora, 4 (2012) 40–42.
  36. M.A. Moharram, H.S. Abdelhalim, E.H. Rozaik, Anaerobic up flow fluidized bed reactor performance as a primary treatment unit in domestic wastewater treatment, HBRC J., 12 (2016) 99–105.
  37. D. Chudy, S. Jabłoński, M. Łukaszewicz, Determination the dynamics of biofilm formation by microorganisms the methanogenic consortium, by the fluorescence microscopy and dark field technique, using computer image analysis, Acta Scientiarum Polonorum Biotechnologia, 10 (2011) 17–28.
  38. E. Fiałkowska, J. Fyda, A. Pajdak-Stós, K. Wiąckowski, Osad czynny, biologia i analiza mikroskopowa. Wydawnictwo Seidel-Przywecki Sp. z o.o., Warszawa, 2010.
  39. M. Bazeli, Mikroorganizmy osadu czynnego, klucz, Gdańska Fundacja Wody, Gdańsk, 2001.
  40. A.L. Nascimento, A.J. Souza, P.A.M. Andrade, F.D. Andreote, A.R. Coscione, F.C. Oliveira, J.B. Regitano, Sewage sludge microbial structures and relations to their sources, treatments, and chemical attributes, Front. Microbiol., 9 (2018) 1462, doi: 10.3389/fmicb.2018.01462.
  41. T. Vítěz, M. Vítězová, M. Nováčková, I. Kushkevych, Activated sludge respiration activity inhibition caused by mobile toilet chemicals, Processes, 8 (2020) 1–12, doi: 10.3390/pr8050598.
  42. Z. Liu, A.M. Maszenan, Y. Liu, W.J. Ng, A brief review on possible approaches towards controlling sulfate-reducing bacteria (SRB) in wastewater treatment systems, Desal. Water Treat., 53 (2015) 2799–2807.
  43. I. Othman, M.H. Ab Halim, A.N. Anuar, N.H. Rosman, H. Haru., S.M. Noor, Z. Ujang, M. van Loosdrecht, Identification and role of microbial species developed in aerobic granular sludge bioreactor for livestock wastewater treatment, IOP Conf. Ser.: Earth Environ. Sci., 479 (2020) 1–23,
    doi: 10.1088/1755-1315/479/1/012026.
  44. R. Babko, T. Kuzmina, V. Pliashechnik, G. Łagód, J. Fyda, Anaerobic ciliates in activated sludge communities, Annu. Set Environ. Prot., 18 (2016) 733–745.
  45. P. Madoni, Protozoa in wastewater treatment processes: a minireview, Italian J. Zool., 78 (2011) 3–11.