References

  1. A.Y. Hoekstra, J. Buurman, K.C.H. van Ginkel, Urban water security: a review, Environ. Res. Lett., 13 (2018) 053002, doi: 10.1088/1748-9326/aaba52.
  2. N. Allocati, M. Masulli, M.F. Alexeyev, C. Di Ilio, Escherichia coli in Europe: an overview, Int. J. Environ. Res. Public Health, 10 (2013) 6235−6254.
  3. S. Zhang, M. Abbas, M.U. Rehman, Y. Huang, R. Zhou, S. Gong, H. Yang, S. Chen, M. Wang, A. Cheng, Dissemination of antimicrobial resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health, Environ. Pollut., 266 (2020) 115260, doi: 10.1016/j.envpol.2020.115260.
  4. M. Ismail, K. Akhtar, M.I. Khan, T. Kamal, M.A. Khan, A. Asiri, J. Seo, S.B. Khan, Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation, Curr. Pharm. Des., 25 (2019) 3645−3663.
  5. A. Tkaczyk, K. Mitrowska, A. Posyniak, Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review, Sci. Total Environ., 717 (2020) 137222, doi:10.1016/j.scitotenv.2020.137222.
  6. R.A. Capeli, T. Belmonte, J. Caierão, C.J. Dalmaschio, S.R. Teixeira, V.R. Mastelaro, A.J. Chiquito, M.D. Teodoro, J.F.M. Domenegueti, E. Longo, L.G. Trindade, F.M. Pontes, Effect of hydrothermal temperature on the antibacterial and photocatalytic activity of WO3 decorated with silver nanoparticles. J. Sol-Gel Sci. Technol., 97 (2021) 228–244.
  7. C. El Bekkali, J. Labrag, A. Oulguidoum, I. Chamkhi, A. Laghzizil, J.-M. Nunzi, D. Robert, J. Aurag, Porous ZnO/hydroxyapatite nanomaterials with effective photocatalytic and antibacterial activities for the degradation of antibiotics, Nanotechnol. Environ. Eng., 7 (2022) 1–9, doi: 10.1007/s41204-021-00172-7.
  8. G. Gnanamoorthy, V.K. Yadav, K.K. Yadav, K. Ramar, J. Alam, A.K. Shukla, F.A. Ahmed Ali, M. Alhoshan, Fabrication of different SnO2 nanorods for enhanced photocatalytic degradation and antibacterial activity, Environ. Sci. Pollut. Res., (2021) 1–11, doi: 10.1007/s11356-021-13627-w.
  9. R. Sharma, Uma, S. Singh, A. Verma, M. Khanuja, Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals, J. Photochem. Photobiol., B, 162 (2016) 266–272.
  10. H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity, Appl. Microbiol. Biotechnol., 90 (2011) 1847–1868.
  11. C.S. Uyguner Demirel, N.C. Birben, M. Bekbolet, A comprehensive review on the use of second generation TiO2 photocatalysts: microorganism inactivation, Chemosphere, 211 (2018) 420–448.
  12. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts, 3 (2013) 189−218.
  13. P. Venkata Laxma Reddy, B. Kavitha, P.A.K. Reddy, K.-H. Kim, TiO2-based photocatalytic disinfection of microbes in aqueous media: a review, Environ. Res., 154 (2017) 296−303.
  14. H.M. Yadav, J.-S. Kim, S.H. Pawar, Developments in photocatalytic antibacterial activity of nano TiO2: a review, Korean J. Chem. Eng., 33 (2016) 1989–1998.
  15. M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, Photocatalytic activity improvement and application
    of UV-TiO2 photocatalysis in textile wastewater treatment: a review, J. Environ. Chem. Eng., 7 (2019) 103248, doi: 10.1016/j.jece.2019.103248.
  16. R. Li, T. Li, Q. Zhou, Impact of titanium dioxide (TiO2) modification on its application to pollution treatment — a review, Catalysts, 10 (2020) 804, doi: 10.3390/catal10070804.
  17. R. Klaysri, T. Tubchareon, P. Praserthdam, One-step synthesis of amine-functionalized TiO2 surface for photocatalytic decolorization under visible light irradiation, J. Ind. Eng. Chem., 45 (2017) 229−236.
  18. G. Xu, Z. Zheng, Y. Wu, N. Feng, Effect of silica on the microstructure and photocatalytic properties of titania, Ceram. Int., 35 (2009) 1−5.
  19. D.M. Tobaldi, A. Tucci, A.S. Škapin, L. Esposito, Effects of SiO2 addition on TiO2 crystal structure and photocatalytic activity, J. Eur. Ceram., 30 (2010) 2481–2490.
  20. A. Sienkiewicz, A. Wanag, E. Kusiak-Nejman, E. Ekiert, P. Rokicka-Konieczna, A.W. Morawski, Effect of calcination on the photocatalytic activity and stability of TiO2 photocatalysts modified with APTES, J. Environ. Chem. Eng., 9 (2021) 104794, doi: 10.1016/j.jece.2020.104794.
  21. P. Rokicka-Konieczna, A. Wanag, A. Sienkiewicz, E. Kusiak-Nejman, A.W. Morawski, Antibacterial effect of TiO2 nanoparticles modified with APTES, Catal. Commun., 134 (2020) 105862, doi: 10.1016/j.catcom.2019.105862.
  22. A. Wanag, A. Sienkiewicz, P. Rokicka-Konieczna, E. Kusiak-Nejman, A.W. Morawski, Influence of modification of titanium dioxide by silane coupling agents on the photocatalytic activity and stability, J. Environ. Chem. Eng., 8 (2020) 103917, doi: 10.1016/j.jece.2020.103917.
  23. C. Byrne, R. Fagan, S. Hinder, D.E. McCormack, S.C. Pillai, New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts, RSC Adv., 6 (2016) 95232, doi: 10.1039/C6RA19759K.
  24. P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles – synthesized via sol-gel route, Spectrochim. Acta, Part A, 117 (2014) 622−629.
  25. M. Ghosh, M. Mondal, S. Mandal, A. Roy, S. Chakrabarty, G. Chakrabarti, S.K. Pradhan, Enhanced photocatalytic and antibacterial activities of mechanosynthesized TiO2–Ag nanocomposite in wastewater treatment, J. Mol. Struct., 1211 (2020) 1280762, doi: 10.1016/j.molstruc.2020.128076.
  26. A. Razmjou, J. Mansouri, V. Chen, The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes, J. Membr. Sci., 378 (2011) 73−84.
  27. D. Meroni, L. Lo Presti, G. Di Liberto, M. Ceotto, R.G. Acres, K.C. Prince, R. Bellani, G. Soliveri, S. Ardizzone,
    A close look at the structure of the TiO2 APTES interface in hybrid nanomaterials and its degradation pathway: an experimental and theoretical study, J. Phys. Chem. C, 121 (2017) 430−440.
  28. A.R.M. Dalod, L. Henriksen, T. Grande, M.-A. Einarsrud, Functionalized TiO2 nanoparticles by single-step hydrothermal synthesis: the role of the silane coupling agents, Beilstein J. Nanotechnol., 8 (2017) 304−312.
  29. V.A. Zeitler, C.A. Brown, The infrared spectra of some Ti−O−Si, Ti−O−Ti and Si−O−Si compounds, J. Phys. Chem., 61 (1957) 1174−1177.
  30. Q. Chen, N.L. Yakovlev, Adsorption and interaction of organosilanes on TiO2 nanoparticles, Appl. Surf. Sci., 257 (2010) 1395−1400.
  31. F. Cheng, S.M. Sajedin, S.M. Kelly, A.F. Lee, A. Kornherr, UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles, Carbohydr. Polym., 114 (2016) 246−252.
  32. E. Ukaji, T. Furusawa, M. Sato, N. Suzuki, The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter, Appl. Surf. Sci., 254 (2007) 563−569.
  33. A.N. Murashkevich, A.S. Lavitskaya, T.I. Barannikova, I.M. Zharskii, Infrared absorption spectra and structure of TiO2-SiO2 composites, J. Appl. Spectrosc., 75 (2008) 730, doi: 10.1007/ s10812-008-9097-3.
  34. M. Muttakin, S. Mitra, K. Thu, K. Ito, B.B. Saha, Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms, Int. J. Heat Mass Transfer, 122 (2018) 795−805.
  35. V.V. Kutarov, E. Robens, Yu. I. Tarasevich, E.V. Aksenenko, Adsorption hysteresis at low relative pressures, Theor. Exp. Chem., 47 (2011) 163−168.
  36. Z. Al-Othman, A review: fundamental aspects of silicate mesoporous materials, Materials, 5 (2012) 2874−2902.
  37. N.R.C. Fernandes Machado, V.S. Santana, Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25, Catal. Today, 107–108 (2005) 595–601.
  38. W. Zhuang, Y. Zhang, L. He, R. An, B. Li, H. Ying, J. Wu, Y. Chen, J. Zhou, X. Lu, Facile synthesis of
    amino-functionalized mesoporous TiO2 microparticles for adenosine deaminase immobilization, Microporous Mesoporous Mater., 239 (2017) 158–166.
  39. P.I. Pontón, J.R.M. d’Almeida, B.A. Marinkovic, S.M. Savić, L. Mancic, N.A. Rey, E. Morgado, F.C. Rizzo, The effects of the chemical composition of titanate nanotubes and solvent type on 3-aminopropyltriethoxysilane grafting efficiency, Appl. Surf. Sci., 301 (2014) 315–322.
  40. W.A. Talavera-Pech, A. Esparza-Ruiz, P. Quintana-Owen, A.F. Vilchis-Nestor, C. Carrera-Figueiras,
    A. Ávila-Ortega, Effects of different amounts of APTES on physicochemical and structural properties
    of amino-functionalized MCM-41-MSNs, J. Sol-Gel Sci. Technol., 80 (2016) 697−708.
  41. Z. Youssef, V. Jouan-Hureaux, L. Colombeau, P. Arnoux, A. Moussaron, F. Baros, J. Toufaily, T. Harmieh,
    T. Roques-Carmes, C. Frochot, Titania and silica nanoparticles coupled to Chlorin e6 for anti-cancer photodynamic therapy, Photodiagn. Photodyn. Ther., 22 (2018) 115−126.
  42. J. Zhao, M. Milanova, M.M.C.G. Warmoeskerken, V. Dutschk, Surface modification of TiO2 nanoparticles with silane coupling agents, Colloids Surf., A, 413 (2012) 273−279.
  43. P. Rokicka-Konieczna, A. Wanag, A. Sienkiewicz, E. Kusiak-Nejman, A.W. Morawski, Effect of APTES modified TiO2 on antioxidant enzymes activity secreted by Escherichia coli and Staphylococcus epidermidis, Biochem. Biophys. Res. Commun., 534 (2021) 1064−1068.
  44. A.K. Benabbou, Z. Derriche, C. Felix, P. Lejeune, P. Guillard, Photocatalytic inactivation of Escherischia coli: effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation, Appl. Catal., B, 76 (2007) 257−263
  45. M. Cho, H. Chung, W. Choi, J. Yoon, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Res., 38 (2004) 1069−1077.
  46. O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami, A review of the mechanisms and modeling of photocatalytic disinfection, Appl. Catal., B, 98 (2010) 27−38.
  47. V.S. Desai, M. Kowshik, Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique, Res. J. Microbiol., 4 (2009) 97–103.
  48. K. Bubacz, B. Tryba, A.W. Morawski, The role of adsorption in decomposition of dyes on TiO2 and N-modified TiO2 photocatalysts under UV and visible light irradiations, Mater. Res. Bull., 47 (2012) 3697−3703.
  49. M.A. Al-Ghouti, R.S. Al-Absi, Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater, Sci. Rep., 10 (2020) 15928, doi: 10.1038/s41598-020-72996-3.
  50. V. Saxena, D.K. Aswal, Surface modifications of photoanodes in dye sensitized solar cells: enhanced light harvesting and reduced recombination, Semicond. Sci. Technol., 30 (2015) 064005,
    doi: 10.1088/0268-1242/30/6/064005.
  51. M.R. Shenoy, S. Ayyasamy, M.V.V. Reddy, G. Kadarkarai, J. Suryakanth, S. Tamilarasan, S. Thangavelu,
    A.Ch. Jeyaramane, The effect of morphology-dependent surface charges of iron oxide on the visible light photocatalytic degradation of methylene blue dye, J. Mater. Sci.: Mater. Electron., 31 (2020) 17703−17717.
  52. M. Kassir, T. Roques-Carmes, K. Assaker, T. Hamieh, A. Razafitianamaharavo, J. Toufaily, F. Villiéras. Enhanced photocatalytic degradation of salicylic acid in waterethanol mixtures from titanium dioxide grafted with hexadecyltrichlorosilane, Phys. Procedia, 55 (2014) 403–408.
  53. D.-N. Bui, S.-Z. Kang, X. Li, J. Mu, Effect of Si doping on the photocatalytic activity and photoelectrochemical property of TiO2 nanoparticles, Catal. Commun., 13 (2011) 14–17.
  54. P. Van Viet, T.H. Huy, S.J. You, L.V. Hieu, C.M. Thi, Hydrothermal synthesis, characterization, and photocatalytic activity of silicon doped TiO2 nanotubes, Superlattices Microstruct., 123 (2018) 447–455.
  55. M. Zamiri, M. Giahi, Photochemical degradation of an anionic surfactant by TiO2 nanoparticle doped with C, N in aqueous solution, Russ. J. Phys. Chem., 90 (2016) 2668–2674.