References
- A.Y. Hoekstra, J. Buurman, K.C.H. van Ginkel, Urban water
security: a review, Environ. Res. Lett., 13 (2018) 053002,
doi: 10.1088/1748-9326/aaba52.
- N. Allocati, M. Masulli, M.F. Alexeyev, C. Di Ilio, Escherichia
coli in Europe: an overview, Int. J. Environ. Res. Public Health,
10 (2013) 6235−6254.
- S. Zhang, M. Abbas, M.U. Rehman, Y. Huang, R. Zhou,
S. Gong, H. Yang, S. Chen, M. Wang, A. Cheng, Dissemination
of antimicrobial resistance genes (ARGs) via integrons in
Escherichia coli: a risk to human health, Environ. Pollut.,
266 (2020) 115260, doi: 10.1016/j.envpol.2020.115260.
- M. Ismail, K. Akhtar, M.I. Khan, T. Kamal, M.A. Khan, A. Asiri,
J. Seo, S.B. Khan, Pollution, toxicity and carcinogenicity of
organic dyes and their catalytic bio-remediation, Curr. Pharm.
Des., 25 (2019) 3645−3663.
- A. Tkaczyk, K. Mitrowska, A. Posyniak, Synthetic organic
dyes as contaminants of the aquatic environment and their
implications for ecosystems: a review, Sci. Total Environ.,
717 (2020) 137222, doi:10.1016/j.scitotenv.2020.137222.
- R.A. Capeli, T. Belmonte, J. Caierão, C.J. Dalmaschio,
S.R. Teixeira, V.R. Mastelaro, A.J. Chiquito, M.D. Teodoro,
J.F.M. Domenegueti, E. Longo, L.G. Trindade, F.M. Pontes,
Effect of hydrothermal temperature on the antibacterial
and photocatalytic activity of WO3 decorated with silver
nanoparticles. J. Sol-Gel Sci. Technol., 97 (2021) 228–244.
- C. El Bekkali, J. Labrag, A. Oulguidoum, I. Chamkhi,
A. Laghzizil, J.-M. Nunzi, D. Robert, J. Aurag, Porous
ZnO/hydroxyapatite nanomaterials with effective
photocatalytic and antibacterial activities for the degradation
of antibiotics, Nanotechnol. Environ. Eng., 7 (2022) 1–9, doi:
10.1007/s41204-021-00172-7.
- G. Gnanamoorthy, V.K. Yadav, K.K. Yadav, K. Ramar, J. Alam,
A.K. Shukla, F.A. Ahmed Ali, M. Alhoshan, Fabrication
of different SnO2 nanorods for enhanced photocatalytic
degradation and antibacterial activity, Environ. Sci. Pollut. Res.,
(2021) 1–11, doi: 10.1007/s11356-021-13627-w.
- R. Sharma, Uma, S. Singh, A. Verma, M. Khanuja, Visible
light induced bactericidal and photocatalytic activity of
hydrothermally synthesized BiVO4 nano-octahedrals,
J. Photochem. Photobiol., B, 162 (2016) 266–272.
- H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Photocatalytic
disinfection using titanium dioxide: spectrum and mechanism
of antimicrobial activity, Appl. Microbiol. Biotechnol., 90 (2011)
1847–1868.
- C.S. Uyguner Demirel, N.C. Birben, M. Bekbolet,
A comprehensive review on the use of second generation TiO2
photocatalysts: microorganism inactivation, Chemosphere,
211 (2018) 420–448.
- A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis:
recent advances and applications, Catalysts, 3 (2013) 189−218.
- P. Venkata Laxma Reddy, B. Kavitha, P.A.K. Reddy, K.-H. Kim,
TiO2-based photocatalytic disinfection of microbes in aqueous
media: a review, Environ. Res., 154 (2017) 296−303.
- H.M. Yadav, J.-S. Kim, S.H. Pawar, Developments in
photocatalytic antibacterial activity of nano TiO2: a review,
Korean J. Chem. Eng., 33 (2016) 1989–1998.
- M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan,
Photocatalytic activity improvement and application
of
UV-TiO2 photocatalysis in textile wastewater treatment: a
review, J. Environ. Chem. Eng., 7 (2019) 103248, doi: 10.1016/j.jece.2019.103248.
- R. Li, T. Li, Q. Zhou, Impact of titanium dioxide (TiO2)
modification on its application to pollution treatment —
a review, Catalysts, 10 (2020) 804, doi: 10.3390/catal10070804.
- R. Klaysri, T. Tubchareon, P. Praserthdam, One-step synthesis
of amine-functionalized TiO2 surface for photocatalytic
decolorization under visible light irradiation, J. Ind. Eng.
Chem., 45 (2017) 229−236.
- G. Xu, Z. Zheng, Y. Wu, N. Feng, Effect of silica on the
microstructure and photocatalytic properties of titania, Ceram.
Int., 35 (2009) 1−5.
- D.M. Tobaldi, A. Tucci, A.S. Škapin, L. Esposito, Effects of SiO2
addition on TiO2 crystal structure and photocatalytic activity,
J. Eur. Ceram., 30 (2010) 2481–2490.
- A. Sienkiewicz, A. Wanag, E. Kusiak-Nejman, E. Ekiert,
P. Rokicka-Konieczna, A.W. Morawski, Effect of calcination on
the photocatalytic activity and stability of TiO2 photocatalysts
modified with APTES, J. Environ. Chem. Eng., 9 (2021) 104794,
doi: 10.1016/j.jece.2020.104794.
- P. Rokicka-Konieczna, A. Wanag, A. Sienkiewicz, E. Kusiak-Nejman, A.W. Morawski, Antibacterial effect of TiO2
nanoparticles modified with APTES, Catal. Commun.,
134 (2020) 105862, doi: 10.1016/j.catcom.2019.105862.
- A. Wanag, A. Sienkiewicz, P. Rokicka-Konieczna, E. Kusiak-Nejman, A.W. Morawski, Influence of modification of titanium
dioxide by silane coupling agents on the photocatalytic
activity and stability, J. Environ. Chem. Eng., 8 (2020) 103917,
doi: 10.1016/j.jece.2020.103917.
- C. Byrne, R. Fagan, S. Hinder, D.E. McCormack, S.C. Pillai,
New approach of modifying the anatase to rutile transition
temperature in TiO2 photocatalysts, RSC Adv., 6 (2016) 95232,
doi: 10.1039/C6RA19759K.
- P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam,
Structural, optical and morphological analyses of pristine
titanium di-oxide nanoparticles – synthesized via sol-gel route,
Spectrochim. Acta, Part A, 117 (2014) 622−629.
- M. Ghosh, M. Mondal, S. Mandal, A. Roy, S. Chakrabarty,
G. Chakrabarti, S.K. Pradhan, Enhanced photocatalytic and
antibacterial activities of mechanosynthesized TiO2–Ag
nanocomposite in wastewater treatment, J. Mol. Struct.,
1211 (2020) 1280762, doi: 10.1016/j.molstruc.2020.128076.
- A. Razmjou, J. Mansouri, V. Chen, The effects of mechanical
and chemical modification of TiO2 nanoparticles on the
surface chemistry, structure and fouling performance of PES
ultrafiltration membranes, J. Membr. Sci., 378 (2011) 73−84.
- D. Meroni, L. Lo Presti, G. Di Liberto, M. Ceotto, R.G. Acres,
K.C. Prince, R. Bellani, G. Soliveri, S. Ardizzone,
A close
look at the structure of the TiO2 APTES interface in hybrid
nanomaterials and its degradation pathway: an experimental
and theoretical study, J. Phys. Chem. C, 121 (2017) 430−440.
- A.R.M. Dalod, L. Henriksen, T. Grande, M.-A. Einarsrud,
Functionalized TiO2 nanoparticles by single-step hydrothermal
synthesis: the role of the silane coupling agents, Beilstein
J. Nanotechnol., 8 (2017) 304−312.
- V.A. Zeitler, C.A. Brown, The infrared spectra of some Ti−O−Si,
Ti−O−Ti and Si−O−Si compounds, J. Phys. Chem., 61 (1957) 1174−1177.
- Q. Chen, N.L. Yakovlev, Adsorption and interaction of
organosilanes on TiO2 nanoparticles, Appl. Surf. Sci., 257 (2010)
1395−1400.
- F. Cheng, S.M. Sajedin, S.M. Kelly, A.F. Lee, A. Kornherr,
UV-stable paper coated with APTES-modified P25 TiO2
nanoparticles, Carbohydr. Polym., 114 (2016) 246−252.
- E. Ukaji, T. Furusawa, M. Sato, N. Suzuki, The effect of surface
modification with silane coupling agent on suppressing the
photo-catalytic activity of fine TiO2 particles as inorganic UV
filter, Appl. Surf. Sci., 254 (2007) 563−569.
- A.N. Murashkevich, A.S. Lavitskaya, T.I. Barannikova,
I.M. Zharskii, Infrared absorption spectra and structure of TiO2-SiO2 composites, J. Appl. Spectrosc., 75 (2008) 730, doi: 10.1007/
s10812-008-9097-3.
- M. Muttakin, S. Mitra, K. Thu, K. Ito, B.B. Saha, Theoretical
framework to evaluate minimum desorption temperature
for IUPAC classified adsorption isotherms, Int. J. Heat Mass
Transfer, 122 (2018) 795−805.
- V.V. Kutarov, E. Robens, Yu. I. Tarasevich, E.V. Aksenenko,
Adsorption hysteresis at low relative pressures, Theor. Exp.
Chem., 47 (2011) 163−168.
- Z. Al-Othman, A review: fundamental aspects of silicate
mesoporous materials, Materials, 5 (2012) 2874−2902.
- N.R.C. Fernandes Machado, V.S. Santana, Influence of thermal
treatment on the structure and photocatalytic activity of TiO2
P25, Catal. Today, 107–108 (2005) 595–601.
- W. Zhuang, Y. Zhang, L. He, R. An, B. Li, H. Ying, J. Wu,
Y. Chen, J. Zhou, X. Lu, Facile synthesis of
amino-functionalized
mesoporous TiO2 microparticles for adenosine deaminase
immobilization, Microporous Mesoporous Mater., 239 (2017)
158–166.
- P.I. Pontón, J.R.M. d’Almeida, B.A. Marinkovic, S.M. Savić,
L. Mancic, N.A. Rey, E. Morgado, F.C. Rizzo, The effects of the
chemical composition of titanate nanotubes and solvent type on
3-aminopropyltriethoxysilane grafting efficiency, Appl. Surf.
Sci., 301 (2014) 315–322.
- W.A. Talavera-Pech, A. Esparza-Ruiz, P. Quintana-Owen,
A.F. Vilchis-Nestor, C. Carrera-Figueiras,
A. Ávila-Ortega,
Effects of different amounts of APTES on physicochemical and
structural properties
of amino-functionalized MCM-41-MSNs,
J. Sol-Gel Sci. Technol., 80 (2016) 697−708.
- Z. Youssef, V. Jouan-Hureaux, L. Colombeau, P. Arnoux,
A. Moussaron, F. Baros, J. Toufaily, T. Harmieh,
T. Roques-Carmes, C. Frochot, Titania and silica nanoparticles coupled to
Chlorin e6 for anti-cancer photodynamic therapy, Photodiagn.
Photodyn. Ther., 22 (2018) 115−126.
- J. Zhao, M. Milanova, M.M.C.G. Warmoeskerken, V. Dutschk,
Surface modification of TiO2 nanoparticles with silane coupling
agents, Colloids Surf., A, 413 (2012) 273−279.
- P. Rokicka-Konieczna, A. Wanag, A. Sienkiewicz, E. Kusiak-Nejman, A.W. Morawski, Effect of APTES modified TiO2 on
antioxidant enzymes activity secreted by Escherichia coli and
Staphylococcus epidermidis, Biochem. Biophys. Res. Commun.,
534 (2021) 1064−1068.
- A.K. Benabbou, Z. Derriche, C. Felix, P. Lejeune, P. Guillard,
Photocatalytic inactivation of Escherischia coli: effect of
concentration of TiO2 and microorganism, nature, and intensity
of UV irradiation, Appl. Catal., B, 76 (2007) 257−263
- M. Cho, H. Chung, W. Choi, J. Yoon, Linear correlation between
inactivation of E. coli and OH radical concentration in TiO2
photocatalytic disinfection, Water Res., 38 (2004) 1069−1077.
- O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami,
A review of the mechanisms and modeling of photocatalytic
disinfection, Appl. Catal., B, 98 (2010) 27−38.
- V.S. Desai, M. Kowshik, Antimicrobial activity of titanium
dioxide nanoparticles synthesized by sol-gel technique, Res.
J. Microbiol., 4 (2009) 97–103.
- K. Bubacz, B. Tryba, A.W. Morawski, The role of adsorption
in decomposition of dyes on TiO2 and N-modified TiO2
photocatalysts under UV and visible light irradiations, Mater.
Res. Bull., 47 (2012) 3697−3703.
- M.A. Al-Ghouti, R.S. Al-Absi, Mechanistic understanding
of the adsorption and thermodynamic aspects of cationic
methylene blue dye onto cellulosic olive stones biomass
from wastewater, Sci. Rep., 10 (2020) 15928, doi: 10.1038/s41598-020-72996-3.
- V. Saxena, D.K. Aswal, Surface modifications of photoanodes
in dye sensitized solar cells: enhanced light harvesting and
reduced recombination, Semicond. Sci. Technol., 30 (2015)
064005,
doi: 10.1088/0268-1242/30/6/064005.
- M.R. Shenoy, S. Ayyasamy, M.V.V. Reddy, G. Kadarkarai,
J. Suryakanth, S. Tamilarasan, S. Thangavelu,
A.Ch. Jeyaramane,
The effect of morphology-dependent surface charges of
iron oxide on the visible light photocatalytic degradation of
methylene blue dye, J. Mater. Sci.: Mater. Electron., 31 (2020)
17703−17717.
- M. Kassir, T. Roques-Carmes, K. Assaker, T. Hamieh,
A. Razafitianamaharavo, J. Toufaily, F. Villiéras. Enhanced
photocatalytic degradation of salicylic acid in waterethanol
mixtures from titanium dioxide grafted with
hexadecyltrichlorosilane, Phys. Procedia, 55 (2014) 403–408.
- D.-N. Bui, S.-Z. Kang, X. Li, J. Mu, Effect of Si doping on the
photocatalytic activity and photoelectrochemical property of
TiO2 nanoparticles, Catal. Commun., 13 (2011) 14–17.
- P. Van Viet, T.H. Huy, S.J. You, L.V. Hieu, C.M. Thi, Hydrothermal
synthesis, characterization, and photocatalytic activity of silicon
doped TiO2 nanotubes, Superlattices Microstruct., 123 (2018)
447–455.
- M. Zamiri, M. Giahi, Photochemical degradation of an anionic
surfactant by TiO2 nanoparticle doped with C, N in aqueous
solution, Russ. J. Phys. Chem., 90 (2016) 2668–2674.