References
- M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water-environment
nexus underpinning future desalination
sustainability, Desalination, 413 (2017) 52–64.
- J. Wang, X. Liu, Forward osmosis technology for water
treatment: recent advances and future perspectives, J. Cleaner
Prod., 280 (2021) 124354, doi: 10.1016/j.jclepro.2020.124354.
- Q. Ge, M. Ling, T.-S. Chung, Draw solutions for forward
osmosis processes: developments, challenges, and prospects for
the future, J. Membr. Sci., 442 (2013) 225–237.
- Z.L. Cheng, X. Li, T.-S. Chung, The forward osmosis-pressure
retarded osmosis (FO-PRO) hybrid system: a new process to
mitigate membrane fouling for sustainable osmotic power
generation, J. Membr. Sci., 559 (2018) 63–74.
- K. Lutchmiah, A.R.D. Verliefde, K. Roest, L.C. Rietveld,
E.R. Cornelissen, Forward osmosis for application in wastewater
treatment: a review, Water Res., 58 (2014) 179–197.
- Z. Li, R. Valladares Linares, S. Sarp, G. Amy, Chapter 9 – Direct
and Indirect Seawater Desalination by Forward Osmosis,
S. Sarp, N. Hilal, Eds., Membrane-Based Salinity Gradient
Processes for Water Treatment and Power Generation, 1st ed.,
Oxford, Elsevier, UK, 2018.
- S. Loeb, L. Titelman, E. Korngold, J. Freiman, Effect of porous
support fabric on osmosis
through a Loeb-Sourirajan type
asymmetric membrane, J. Membr. Sci., 129 (1997) 243–249.
- J.R. McCutcheon, M. Elimelech, Modeling water flux in forward
osmosis: implications for improved membrane design, AIChE
J., 53 (2007) 1736–1744.
- I.A. Alenezi, A.A. Merdaw, Proportionality of solute flux and
permeability to water flux and permeability in forward osmosis
process, Desal. Water Treat., 225 (2021) 29–36.
- I.A. Alsayer, A.A. Merdaw, I.S. Al-Mutaz, Effect of membrane
mean pore diameter on water and solute flux in forward
osmosis processes, Int. J. Adv. Appl. Sci., (in press).
- J.T. Tinge, G.J.P. Krooshof, T.M. Smeets, F.H.P. Vergossen,
J. Krijgsman, E. Hoving, R.M. Altink, Direct osmosis membrane
process to de-water aqueous caprolactam with concentrated
aqueous ammonium sulphate, Chem. Eng. Process., 46 (2007)
505–512.
- D. Hughes, T. Taha, Z. Cui, Mass Transfer: Membrane Processes,
S.S. Sablani, A.K. Datta, M. Shafiur Rahman, A.S. Mujumdar,
Eds., Handbook of Food and Bioprocess Modeling Techniques,
CRC Press, Boca Raton (USA), 2006.
- M.M. Pendergast, S.M. Nowosielski-Slepowron, J. Tracy,
Going big with forward osmosis, Desal. Water Treat., 57 (2016)
26529–26538.
- S.E. Ingebritsen, W.E. Sanford, C.E. Neuzil, Groundwater in
Geologic Processes, 2nd ed., University Press, Cambridge, 2006.
- J.H. van’t Hoff, The role of osmotic pressure in the analogy
between solutions and gases, Zeitschrift fur physikalische
Chemie, 1 (1887) 481–508.
- A.D. McNaught, A. Wilkinson, IUPAC Compendium of
Chemical Terminology, 2nd ed., The Gold Book, Blackwell
Science, Oxford, UK, 1997.
- R.W. Baker, Membrane Technology and Application, 2nd ed.,
John Wiley & Sons, Ltd., Chichester, UK, 2004.
- P. Vanýsek, Ionic Conductivity and Diffusion at Infinite
Dilution, Handbook of Chemistry and Physics, 1992/93 ed.,
CRC Press, Boca Raton, 1992, pp. (5–111)–(5–113).
- PhreeqC (Version 3) – A Computer Program for Speciation,
Batch-Reaction, One-Dimensional Transport, and Inverse
Geochemical Calculations; [The Diffusion Coefficients are
Taken from the Thermodynamic Database “phreeqc.dat”].
- H. Mehdizadeh, J.M. Dickson, Modeling of reverse osmosis
in the presence of strong solutemembrane affinity, AIChE J.,
39 (1993) 434–445.
- S.S. Sablani, M.F.A. Goosen, R. Al-Belushi, M. Wilf, Concentration
polarization in ultrafiltration and reverse osmosis: a
critical review, Desalination, 141 (2001) 269–289.
- J. Ren, Z. Li, F. Wong, A new method for the prediction of pore
size distribution and MWCO of ultrafiltration membranes,
J. Membr. Sci., 279 (2006) 558–569.
- Y. Fang, L. Bian, Q. Bi, Q. Li, X. Wang, Evaluation of the pore
size distribution of a forward osmosis membrane in three
different ways, J. Membr. Sci., 454 (2014) 390–397.
- A.A. Merdaw, A.O. Sharif, G.A.W. Derwish, Mass transfer in
pressure-driven membrane separation processes, Part II, Chem.
Eng. J., 168 (2011) 229–240.