References

  1. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water-environment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  2. J. Wang, X. Liu, Forward osmosis technology for water treatment: recent advances and future perspectives, J. Cleaner Prod., 280 (2021) 124354, doi: 10.1016/j.jclepro.2020.124354.
  3. Q. Ge, M. Ling, T.-S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future, J. Membr. Sci., 442 (2013) 225–237.
  4. Z.L. Cheng, X. Li, T.-S. Chung, The forward osmosis-pressure retarded osmosis (FO-PRO) hybrid system: a new process to mitigate membrane fouling for sustainable osmotic power generation, J. Membr. Sci., 559 (2018) 63–74.
  5. K. Lutchmiah, A.R.D. Verliefde, K. Roest, L.C. Rietveld, E.R. Cornelissen, Forward osmosis for application in wastewater treatment: a review, Water Res., 58 (2014) 179–197.
  6. Z. Li, R. Valladares Linares, S. Sarp, G. Amy, Chapter 9 – Direct and Indirect Seawater Desalination by Forward Osmosis, S. Sarp, N. Hilal, Eds., Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation, 1st ed., Oxford, Elsevier, UK, 2018.
  7. S. Loeb, L. Titelman, E. Korngold, J. Freiman, Effect of porous support fabric on osmosis
    through a Loeb-Sourirajan type asymmetric membrane, J. Membr. Sci., 129 (1997) 243–249.
  8. J.R. McCutcheon, M. Elimelech, Modeling water flux in forward osmosis: implications for improved membrane design, AIChE J., 53 (2007) 1736–1744.
  9. I.A. Alenezi, A.A. Merdaw, Proportionality of solute flux and permeability to water flux and permeability in forward osmosis process, Desal. Water Treat., 225 (2021) 29–36.
  10. I.A. Alsayer, A.A. Merdaw, I.S. Al-Mutaz, Effect of membrane mean pore diameter on water and solute flux in forward osmosis processes, Int. J. Adv. Appl. Sci., (in press).
  11. J.T. Tinge, G.J.P. Krooshof, T.M. Smeets, F.H.P. Vergossen, J. Krijgsman, E. Hoving, R.M. Altink, Direct osmosis membrane process to de-water aqueous caprolactam with concentrated aqueous ammonium sulphate, Chem. Eng. Process., 46 (2007) 505–512.
  12. D. Hughes, T. Taha, Z. Cui, Mass Transfer: Membrane Processes, S.S. Sablani, A.K. Datta, M. Shafiur Rahman, A.S. Mujumdar, Eds., Handbook of Food and Bioprocess Modeling Techniques, CRC Press, Boca Raton (USA), 2006.
  13. M.M. Pendergast, S.M. Nowosielski-Slepowron, J. Tracy, Going big with forward osmosis, Desal. Water Treat., 57 (2016) 26529–26538.
  14. S.E. Ingebritsen, W.E. Sanford, C.E. Neuzil, Groundwater in Geologic Processes, 2nd ed., University Press, Cambridge, 2006.
  15. J.H. van’t Hoff, The role of osmotic pressure in the analogy between solutions and gases, Zeitschrift fur physikalische Chemie, 1 (1887) 481–508.
  16. A.D. McNaught, A. Wilkinson, IUPAC Compendium of Chemical Terminology, 2nd ed., The Gold Book, Blackwell Science, Oxford, UK, 1997.
  17. R.W. Baker, Membrane Technology and Application, 2nd ed., John Wiley & Sons, Ltd., Chichester, UK, 2004.
  18. P. Vanýsek, Ionic Conductivity and Diffusion at Infinite Dilution, Handbook of Chemistry and Physics, 1992/93 ed., CRC Press, Boca Raton, 1992, pp. (5–111)–(5–113).
  19. PhreeqC (Version 3) – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; [The Diffusion Coefficients are Taken from the Thermodynamic Database “phreeqc.dat”].
  20. H. Mehdizadeh, J.M. Dickson, Modeling of reverse osmosis in the presence of strong solutemembrane affinity, AIChE J., 39 (1993) 434–445.
  21. S.S. Sablani, M.F.A. Goosen, R. Al-Belushi, M. Wilf, Concentration polarization in ultrafiltration and reverse osmosis: a critical review, Desalination, 141 (2001) 269–289.
  22. J. Ren, Z. Li, F. Wong, A new method for the prediction of pore size distribution and MWCO of ultrafiltration membranes, J. Membr. Sci., 279 (2006) 558–569.
  23. Y. Fang, L. Bian, Q. Bi, Q. Li, X. Wang, Evaluation of the pore size distribution of a forward osmosis membrane in three different ways, J. Membr. Sci., 454 (2014) 390–397.
  24. A.A. Merdaw, A.O. Sharif, G.A.W. Derwish, Mass transfer in pressure-driven membrane separation processes, Part II, Chem. Eng. J., 168 (2011) 229–240.