References
- R. Wang, J. Zimmerman, Hybrid analysis of blue water
consumption and water scarcity implications at the global,
national, and basin levels in an increasingly globalized world,
Environ. Sci. Technol., 50 (2016) 5143–5153.
- M. Elimelech, W.A. Phillip, The future of seawater desalination:
energy, technology, and the environment, Science, 333 (2011)
712–717.
- G. Meerganz von Medeazza, V. Moreau, Modelling of water–energy systems. The case of desalination, Energy, 32 (2007)
1024–1031.
- J. Song, T. Li, L. Wright-Contreras, A.W.-K. Law, A review of
the current status of small-scale seawater reverse osmosis
desalination, Water Int., 42 (2017) 618–631.
- A. Subramani, M. Badruzzaman, J. Oppenheimer, J.G. Jacangelo,
Energy minimization strategies and renewable energy
utilization for desalination: a review, Water Res., 45 (2011)
1907–1920.
- M. Thomson, M.S. Miranda, D. Infield, A small-scale seawater
reverse-osmosis system with excellent energy efficiency over a
wide operating range, Desalination, 153 (2002) 229–236.
- V.G. Gude, Energy consumption and recovery in reverse
osmosis, Desal. Water Treat., 36 (2012) 239–260.
- J. Kim, K. Park, D.R. Yang, S. Hong, A comprehensive review of
energy consumption of seawater reverse osmosis desalination
plants, Appl. Energy, 254 (2019) 113652, doi: 10.1016/j.
apenergy.2019.113652.
- S. Bross, W. Kochanowski, N. El Maraghy, SWRO-corehydraulic-
system: first field test experience, Desalination,
184 (2005) 223–232.
- C.C. Mei, Y.-H. Liu, A.W.K. Law, Theory of isobaric pressure
exchanger for desalination, Desal. Water Treat., 39 (2012)
112–122.
- P.D. Richard L. Stover, Development of a fourth generation
energy recovery device, Desalination, 165 (2004) 313–321.
- R.L. Stover, Seawater reverse osmosis with isobaric energy
recovery devices, Desalination, 203 (2007) 168–175.
- R.L. Stover, B. Andrews, Isobaric energy-recovery devices:
past, present, and future, IDA J. Desal. Water Reuse, 4 (2013)
38–43.
- I.B. Cameron, R.B. Clemente, SWRO with ERI’s PX pressure
exchanger device — a global survey, Desalination, 221 (2008)
136–142.
- N. Liu, Z. Liu, Y. Li, L. Sang, An optimization study on the seal
structure of fully-rotary valve energy recovery device by CFD,
Desalination, 459 (2019) 46–58.
- D. Song, Y. Wang, S. Xu, J. Gao, Y. Ren, S. Wang, Analysis,
experiment and application of a power-saving actuator applied
in the piston type energy recovery device, Desalination,
361 (2015) 65–71.
- D. Song, Y. Zhang, H. Wang, L. Jiang, C. Wang, S. Wang,
Z. Jiang, H. Li, Demonstration of a piston type integrated
high pressure pump-energy recovery device for reverse
osmosis desalination system, Desalination, 507 (2021) 115033,
doi: 10.1016/j.desal.2021.115033.
- Y. Wang, Y. Ren, J. Zhou, E. Xu, S. Xu, Functionality test of an
innovative single-cylinder energy recovery device for SWRO
desalination system, Desalination, 388 (2016) 22–28.
- Y. Wang, S. Wang, S. Xu, Investigations on characteristics and
efficiency of a positive displacement energy recovery unit,
Desalination, 177 (2005) 179–185.
- J. Zhou, Y. Wang, Y. Duan, J. Tian, S. Xu, Capacity flexibility
evaluation of a reciprocating-switcher energy recovery device
for SWRO desalination system, Desalination, 416 (2017) 45–53.
- Z. Sun, Y. Wang, J. Zhou, Z. Xu, S. Xu, Development and
operational stability evaluation of new three-cylinder energy
recovery device for SWRO desalination system, Desalination,
502 (2021) 114909, doi: 10.1016/j.desal.2020.114909.
- N. Lasse, W.G.W. Langmaack, iSave the Easiest and Most
Compact Way to Save Energy on SWRO Plants, 2010 Asia-Pacific Conference on Desalination and Water Reclamation,
2010.
- S.P. Center, Compact high energy system for RO plant, World
Pumps, 2013 (2013) 27–28.
- B. Peñate, L. García-Rodríguez, Energy optimisation of existing
SWRO (seawater reverse osmosis) plants with ERT (energy
recovery turbines): technical and thermoeconomic assessment,
Energy, 36 (2011) 613–626.
- J. Tian, Y. Wang, J. Zhou, Z. He, S. Xu, Development and
experimental evaluation of an innovative self-boosting energy
recovery device for small-scale SWRO system, Desal. Water
Treat., 181 (2020) 28–37.
- A. Alhathal Alanezi, A. Altaee, A.O. Sharif, The effect of energy
recovery device and feed flow rate on the energy efficiency of
reverse osmosis process, Chem. Eng. Res. Des., 158 (2020) 12–23.
- S. Mambretti, E. Orsi, S. Gagliardi, R. Stover, Behaviour of
energy recovery devices in unsteady flow conditions and
application in the modelling of the Hamma desalination plant,
Desalination, 238 (2009) 233–245.
- G.M. Geise, H.-S. Lee, D.J. Miller, B.D. Freeman, J.E. McGrath,
D.R. Paul, Water purification by membranes: the role of polymer
science, J. Polym. Sci. Pol. Phys., 48 (2010) 1685–1718.
- P.S. Goh, T. Matsuura, A.F. Ismail, N. Hilal, Recent trends
in membranes and membrane processes for desalination,
Desalination, 391 (2016) 43–60.
- K. Jeong, Y.G. Lee, S.J. Ki, J.H. Kim, Modeling seawater reverse
osmosis system under degradation conditions of membrane
performance: assessment of isobaric energy recovery devices
and feed pressure control benefits, Desal. Water Treat., 57 (2015)
20210–20218.
- J. Zhou, Y. Wang, Z. Sun, S. Xu, Experimental and numerical
investigations of overlapping function in enhancing flow
continuity for reciprocating-switcher energy recovery device,
Desalination, 487 (2020) 114494, doi: 10.1016/j.desal.2020.114494.
- J. Zhou, Y. Wang, Z. Feng, Z. He, S. Xu, Effective modifications
of reciprocating-switcher energy recovery device by adopting
pilot valve plates to decrease the switching load and fluid
fluctuations, Desalination, 462 (2019) 39–47.