References
- J. Hubeny, M. Harnisz, E. Korzeniewska, M. Buta, W. Zieliński,
D. Rolbiecki, J. Giebułtowicz, G. Nałęcz-Jawecki,
G. Płaza,
Industrialization as a source of heavy metals and antibiotics
which can enhance the antibiotic resistance in wastewater,
sewage sludge and river water, PLoS One, 16 (2021) e0252691,
doi:10.1371/journal.pone.0252691.
- N.A.A. Qasem, R.H. Mohammed, D.U. Lawal, Removal
of heavy metal ions from wastewater: a comprehensive
and critical review, npj Clean Water, 4 (2021), doi: 10.1038/s41545-021-00127-0.
- P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy
Metals Toxicity and the Environment, A. Luch, Ed., Mol. Clin.
Environ. Toxicol., Springer Basel, Basel, 2012, pp. 133–164.
Available at: https://doi.org/10.1007/978-3-7643-8340-4_6
- Y. Wu, Z. Zhang, P. He, H. Ren, N. Wei, F. Zhang, H. Cheng,
Q. Wang, Membrane fouling in a hybrid process of enhanced
coagulation at high coagulant dosage and cross-flow
ultrafiltration for deinking wastewater tertiary treatment,
J. Cleaner Prod., 230 (2019) 1027–1035.
- K.E. Lee, N. Morad, T.T. Teng, B.T. Poh, Development,
characterization and the application of hybrid materials in
coagulation/flocculation of wastewater: a review, Chem. Eng. J.,
203 (2012) 370–386.
- K.E. Lee, M.M. Hanafiah, A.A. Halim, M.H. Mahmud, Primary
treatment of dye wastewater using Aloe vera-aided aluminium
and magnesium hybrid coagulants, Procedia Environ. Sci.,
30 (2015) 56–61.
- Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat,
X. Wang, Environmental remediation and application of
nanoscale zero-valent iron and its composites for the removal
of heavy metal ions: a review, Environ. Sci. Technol., 50 (2016)
7290–7304.
- M.S.S. Abujazar, S.U. Karaağaç, S.S. Abu Amr, M.Y.D. Alazaiza,
M.J. Bashir, Recent advancement in the application of hybrid
coagulants in coagulation-flocculation of wastewater: a
review, J. Cleaner Prod., 345 (2022) 131133, doi: 10.1016/j.jclepro.2022.131133.
- A. Aghababai Beni, A. Esmaeili, Y. Behjat, Invent of a
simultaneous adsorption and separation process based on
dynamic membrane for treatment Zn(II), Ni(II) and, Co(II)
industrial wastewater, Arabian J. Chem., 14 (2021) 103231,
doi: 10.1016/j.arabjc.2021.103231.
- M. Alazaiza, A. Albahnasawi, G. Ali, M. Bashir, D. Nassani, T. Al
Maskari, S. Amr, M. Abujazar, Application of natural coagulants
for pharmaceutical removal from water and wastewater:
a review, Water, 14 (2022) 140, doi: 10.3390/w14020140.
- G. Wu, Z. Li, Y. Huang, F. Zan, J. Dai, J. Yao, B. Yang, G. Chen,
L. Lei, Electrochemically assisted sulfate reduction autotrophic
denitrification nitrification integrated (e-SANI®) process for
high-strength ammonium industrial wastewater treatment,
Chem. Eng. J., 381 (2020) 122707, doi: 10.1016/j.cej.2019.
122707.
- M.A.N. Camacho, A.I.G. López, A. Martinez-Ferez,
J.M. Ochando-Pulido, Increasing large-scale feasibility of twophase
olive-oil washing wastewater treatment and phenolic
fraction recovery with novel ion exchange resins, Chem. Eng.
Process. Process Intensif., 164 (2021) 108416, doi: 10.1016/j.cep.2021.108416.
- G. Han, Y. Du, Y. Huang, S. Yang, W. Wang, S. Su, B. Liu,
Efficient removal of hazardous benzohydroxamic acid
(BHA) contaminants from the industrial beneficiation
wastewaters by facile precipitation flotation process, Sep.
Purif. Technol., 279 (2021) 119718, doi: 10.1016/j.seppur.2021.
119718.
- Y. Jiao, L. Liu, Q. Zhang, M. Zhou, Y. Zhang, Treatment of
reverse osmosis concentrate from industrial coal wastewater
using an electro-peroxone process with a natural air diffusion
electrode, Sep. Purif. Technol., 279 (2021) 119667, doi: 10.1016/j.seppur.2021.119667.
- A.A. Owodunni, S. Ismail, Revolutionary technique for
sustainable plant-based green coagulants in industrial
wastewater treatment—a review, J. Water Process Eng.,
42 (2021) 102096, doi: 10.1016/j.jwpe.2021.102096.
- G.L. Muniz, A.C. Borges, T.C.F. da Silva, Performance of natural
coagulants obtained from agro-industrial wastes in dairy
wastewater treatment using dissolved air flotation, J. Water
Process Eng., 37 (2020) 101453, doi: 10.1016/j.jwpe.2020.101453.
- P.J.M. Martins, P.M. Reis, R.C. Martins, L.M. Gando-Ferreira,
R.M. Quinta-Ferreira, Iron recovery from the Fenton’s treatment
of winery effluent using an ion-exchange resin, J. Mol. Liq.,
242 (2017) 505–511.
- N. Meunier, P. Drogui, C. Montané, R. Hausler, G. Mercier,
J.-F. Blais, Comparison between electrocoagulation and
chemical precipitation for metals removal from acidic soil
leachate, J. Hazard. Mater., 137 (2006) 581–590.
- P. Ostermeyer, L. Bonin, K. Folens, F. Verbruggen,
C. García-Timermans, K. Verbeken, K. Rabaey, T. Hennebel,
Effect of speciation and composition on the kinetics and
precipitation of arsenic sulfide from industrial metallurgical
wastewater, J. Hazard. Mater., 409 (2021) 124418, doi: 10.1016/j.jhazmat.2020.124418.
- M.I. Ejimofor, I.G. Ezemagu, M.C. Menkiti, Biogas production
using coagulation sludge obtained from paint wastewater
decontamination: characterization and anaerobic digestion
kinetics, Curr. Res. Green Sustain. Chem., 3 (2020) 100024,
doi: 10.1016/j.crgsc.2020.100024.
- Z.Z. Abidin, N. Ismail, R. Yunus, I.S. Ahamad, A. Idris,
A preliminary study on Jatropha curcas as coagulant in
wastewater treatment, Environ. Technol., 32 (2011) 971–977.
- P. Vega Andrade, C.F. Palanca, M.A.C. de Oliveira, C.Y.K. Ito,
A.G. dos Reis, Use of Moringa oleifera seed as a natural coagulant
in domestic wastewater tertiary treatment: physicochemical,
cytotoxicity and bacterial load evaluation, J. Water Process Eng.,
40 (2021) 101859, doi: 10.1016/j.jwpe.2020.101859.
- H. Guven, R.K. Dereli, H. Ozgun, M.E. Ersahin, I. Ozturk,
Towards sustainable and energy efficient municipal wastewater
treatment by up-concentration of organics, Prog. Energy
Combust. Sci., 70 (2019) 145–168.
- G. Vijayaraghavan, S. Shanthakumar, Performance study on
algal alginate as natural coagulant for the removal of Congo red
dye, Desal. Water Treat., 57 (2016) 6384–6392.
- M.B. Fard, D. Hamidi, K. Yetilmezsoy, J. Alavi, F. Hosseinpour,
Utilization of Alyssum mucilage as a natural coagulant in oilysaline
wastewater treatment, J. Water Process Eng., 40 (2021)
101763, doi:10.1016/j.jwpe.2020.101763.
- W.L. Ang, A.W. Mohammad, State of the art and
sustainability of natural coagulants in water and wastewater
treatment, J. Cleaner Prod., 262 (2020) 121267, doi: 10.1016/j.jclepro.2020.121267.
- T.A. Kurniawan, G.Y.S. Chan, W.-H. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with
heavy metals, Chem. Eng. J., 118 (2006) 83–98.
- J. del Real-Olvera, E. Rustrian-Portilla, E. Houbron, F.J. Landa-Huerta, Adsorption of organic pollutants from slaughterhouse
wastewater using powder of Moringa oleifera seeds as a
natural coagulant, Desal. Water Treat., 57 (2016) 9971–9981.
- A. Hariz Amran, N. Syamimi Zaidi, K. Muda, L. Wai Loan,
Effectiveness of natural coagulant in coagulation process:
a review, Int. J. Eng. Technol., 7 (2018) 34, doi: 10.14419/ijet.v7i3.9.15269.
- A. Ahmad, S.R.S. Abdullah, H.A. Hasan, A.R. Othman,
N. ’Izzati Ismail, Plant-based versus metal-based coagulants
in aquaculture wastewater treatment: effect of mass ratio
and settling time, J. Water Process Eng., 43 (2021) 102269,
doi: 10.1016/j.jwpe.2021.102269.
- S. Veli, A. Arslan, M. Isgoren, D. Bingol, D. Demiral,
Experimental design approach to COD and color removal
of landfill leachate by the electrooxidation process, Environ.
Challenges, 5 (2021) 100369, doi:10.1016/j.envc.2021.
100369.
- H. Salehizadeh, S.A. Shojaosadati, Extracellular biopolymeric
flocculants recent trends and biotechnological importance,
Biotechnol. Adv., 19 (2001) 371–385.
- N. He, Y. Li, J. Chen, S. Lun, Identification of a novel bioflocculant
from a newly isolated Corynebacterium glutamicum, Biochem.
Eng. J., 11 (2002) 137–148.
- S. Vishali, R. Karthikeyan, Cactus opuntia (ficus - indica): an ecofriendly
alternative coagulant in the treatment of paint effluent,
Desal. Water Treat., 56 (2015) 1489–1497.
- B. Kakoi, J.W. Kaluli, P. Ndiba, G. Thiong’o, Banana pith as a
natural coagulant for polluted river water, Ecol. Eng., 95 (2016)
699–705.
- B. Ramavandi, S. Farjadfard, Removal of chemical oxygen
demand from textile wastewater using a natural coagulant,
Korean J. Chem. Eng., 31 (2014) 81–87.
- M. Besharati Fard, D. Hamidi, J. Alavi, R. Jamshidian,
A. Pendashteh, S.A. Mirbagheri, Saline oily wastewater
treatment using Lallemantia mucilage as a natural coagulant:
kinetic study, process optimization, and modeling, Ind. Crops
Prod., 163 (2021) 113326, doi: 10.1016/j.indcrop.2021.113326.
- T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi,
J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of
toxicity of zinc oxide and cerium oxide nanoparticles based on
dissolution and oxidative stress properties, ACS Nano, 2 (2008)
2121–2134.
- G. Palma, Removal of metal ions by modified Pinus radiata
bark and tannins from water solutions, Water Res., 37 (2003)
4974–4980.
- P. Scho, D.M. Mbugua, A.N. Pell, Analysis of condensed tannins:
a review, Anim. Feed Sci. Technol., 91 (2001) 21–40.
- A.S. Mangrich, M.E. Doumer, A.S. Mallmannn, C.R. Wolf,
Green chemistry in water treatment: use of coagulant derived
from Acacia mearnsii tannin extracts, Rev. Virtual Química,
6 (2014) 2–15.
- T.J. Kim, J.L. Silva, M.K. Kim, Y.S. Jung, Enhanced antioxidant
capacity and antimicrobial activity of tannic acid by thermal
processing, Food Chem., 118 (2010) 740–746.
- B. Zhang, H. Su, X. Gu, X. Huang, H. Wang, Effect of structure
and charge of polysaccharide flocculants on their flocculation
performance for bentonite suspensions, Colloids Surf., A,
436 (2013) 443–449.
- K. Okaiyeto, U. Nwodo, L. Mabinya, A. Okoh, Characterization
of a bioflocculant produced by a consortium of Halomonas
sp. Okoh and Micrococcus sp. Leo, Int. J. Environ. Res. Public
Health., 10 (2013) 5097–5110.
- L. Wang, Z. Feng, X. Wang, X. Wang, X. Zhang, DEGseq: an
R package for identifying differentially expressed genes from
RNA-seq data, Bioinformatics, 26 (2010) 136–138.
- D. Zhang, Z. Hou, Z. Liu, T. Wang, Experimental research on
Phanerochaete chrysosporium as coal microbial flocculant, Int.
J. Min. Sci. Technol., 23 (2013) 521–524.
- U.U. Nwodo, A.I. Okoh, Characterization and flocculation
properties of biopolymeric flocculant (glycosaminoglycan)
produced by Cellulomonas sp. Okoh, J. Appl. Microbiol.,
114 (2013) 1325–1337.