References
- R. Colciaghi, R. Simonetti, L. Molinaroli, M. Binotti, G. Manzolini,
Potentialities of thermal responsive polymer in forward osmosis
(FO) process for water desalination, Desalination, 519 (2021)
115311, doi: 10.1016/j.desal.2021.115311.
- D.J. Johnson, W.A. Suwaileh, A.W. Mohammed, N. Hilal,
Osmotic’s potential: an overview of draw solutes for forward
osmosis, Desalination, 434 (2018) 100–120.
- N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and
evaluation of the economics of water desalination: current
and future challenges for better water supply sustainability,
Desalination, 309 (2013) 197–207.
- K. Park, J. Kim, D.R. Yang, S. Hong, Towards a low-energy
seawater reverse osmosis desalination plant: a review and
theoretical analysis for future directions, J. Membr. Sci., 595
(2020) 117607, doi: 10.1016/j.memsci.2019.117607.
- K. Park, Y.H. Jang, J.W. Chang, D.R. Yang, Membrane transport
behavior characterization method with constant water flux in
pressure-assisted forward osmosis, Desalination, 498 (2021)
114738, doi: 10.1016/j.desal.2020.114738.
- T.-S. Chung, S. Zhang, K.Y. Wang, J. Su, M.M. Ling, Forward
osmosis processes: yesterday, today and tomorrow, Desalination,
287 (2012) 78–81.
- M.-k. Kim, J.W. Chang, K. Park, D.R. Yang, Comprehensive
assessment of the effects of operating conditions on membrane
intrinsic parameters of forward osmosis (FO) based on principal
component analysis (PCA), J. Membr. Sci., 641 (2022) 119909,
doi: 10.1016/j.memsci.2021.119909.
- G.T. Gray, J.R. McCutcheon, M. Elimelech, Internal concentration
polarization in forward osmosis: role of membrane orientation,
Desalination, 197 (2006) 1–8.
- B. Kim, G. Gwak, S. Hong, Analysis of enhancing water flux
and reducing reverse solute flux in pressure assisted forward
osmosis process, Desalination, 421 (2017) 61–71.
- A. Rajkomar, J. Dean, I. Kohane, Machine learning in medicine,
New. Eng. J. Med., 380 (2019) 1347–1358.
- M.J. Volk, I. Lourentzou, S. Mishra, L.T. Vo, C. Zhai, H. Zhao,
Biosystems design by machine learning, ACS Synth. Biol.,
9 (2020) 1514–1533.
- S. Stocker, G. Csányi, K. Reuter, J.T. Margraf, Machine learning
in chemical reaction space, Nat. Commun., 11 (2020) 1–11.
- G.N. Marichal Plasencia, J. Camacho-Espino, D. Ávila Prats,
B. Peñate Suárez, Machine learning models applied to manage
the operation of a simple SWRO desalination plant and its
application in marine vessels, Water, 13 (2021) 2547, doi:
10.3390/w13182547.
- K. Aghilesh, A. Mungray, S. Agarwal, J. Ali, M.C. Garg,
Performance optimisation of forward-osmosis membrane
system using machine learning for the treatment of textile
industry wastewater, J. Cleaner Prod., 289 (2021) 125690, doi:
10.1016/j.jclepro.2020.125690.
- E.A. Roehl Jr., D.A. Ladner, R.C. Daamen, J.B. Cook, J. Safarik,
D.W. Phipps Jr., P. Xie, Modeling fouling in a large RO system
with artificial neural networks, J. Membr. Sci., 552 (2018)
95–106.
- J. Jawad, A.H. Hawari, S. Zaidi, Modeling of forward osmosis
process using artificial neural networks (ANN) to predict the
permeate flux, Desalination, 484 (2020) 114427, doi: 10.1016/j.desal.2020.114427.
- Y. Xu, X. Peng, C.Y. Tang, Q.S. Fu, S. Nie, Effect of draw solution
concentration and operating conditions on forward osmosis
and pressure retarded osmosis performance in a spiral wound
module, J. Membr. Sci., 348 (2010) 298–309.
- S. Sousa, F.G. Martins, M.C. Alvim-Ferraz, M.C. Pereira,
Multiple linear regression and artificial neural networks based
on principal components to predict ozone concentrations,
Environ. Modell. Software, 22 (2007) 97–103.
- A.F. Mashaly, A. Alazba, MLP and MLR models for instantaneous
thermal efficiency prediction of solar still under hyper-arid
environment, Comput. Electron. Agric., 122 (2016) 146–155.
- F. Khademi, S.M. Jamal, N. Deshpande, S. Londhe, Predicting
strength of recycled aggregate concrete using artificial neural
network, adaptive neuro-fuzzy inference system and multiple
linear regression, Int. J. Sustainable Built Environ., 5 (2016)
355–369.
- G.K. Uyanık, N. Güler, A study on multiple linear regression
analysis, Procedia Soc. Behav. Sci., 106 (2013) 234–240.
- W. Dong, Y. Huang, B. Lehane, G. Ma, XGBoost algorithm-based
prediction of concrete electrical resistivity for structural health
monitoring, Autom. Constr., 114 (2020) 103155, doi: 10.1016/j.autcon.2020.103155.
- Y. Liang, J. Wu, W. Wang, Y. Cao, B. Zhong, Z. Chen, Z. Li,
Product Marketing Prediction Based on XGBoost and LightGBM
Algorithm, Proceedings of the 2nd International Conference
on Artificial Intelligence and Pattern Recognition, Association
for Computing Machinery, New York, NY, United States, 2019,
pp. 150–153, doi: 10.1145/3357254.3357290.
- X. Ma, J. Sha, D. Wang, Y. Yu, Q. Yang, X. Niu, Study on a
prediction of P2P network loan default based on the machine
learning LightGBM and XGBoost algorithms according to
different high dimensional data cleaning, Electron. Commer.
Res. Appl., 31 (2018) 24–39.
- J. Brownlee, XGBoost With Python: Gradient boosted Trees
with XGBoost and Scikit-Learn, Machine Learning Mastery,
2016.
- A. Shehadeh, O. Alshboul, R.E. Al Mamlook, O. Hamedat,
Machine learning models for predicting the residual value
of heavy construction equipment: an evaluation of modified
decision tree, LightGBM, and XGBoost regression, Autom.
Constr., 129 (2021) 103827, doi: 10.1016/j.autcon.2021.103827.
- G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye,
T.-Y. Liu, LightGBM: A Highly Efficient Gradient Boosting
Decision Tree, 31st Conference on Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017.
- M.R. Machado, S. Karray, I.T. de Sousa, LightGBM: An Effective
Decision Tree Gradient Boosting Method to Predict Customer
Loyalty in the Finance Industry, 2019 14th International
Conference on Computer Science & Education (ICCSE), IEEE,
Toronto, ON, Canada, 2019, pp. 1111–1116.
- H. Gholami, A. Mohamadifar, A. Sorooshian, J.D. Jansen,
Machine-learning algorithms for predicting land susceptibility
to dust emissions: the case of the Jazmurian Basin, Iran, Atmos.
Pollut. Res., 11 (2020) 1303–1315.
- F. Arcadu, F. Benmansour, A. Maunz, J. Willis, Z. Haskova,
M. Prunotto, Deep learning algorithm predicts diabetic
retinopathy progression in individual patients, npj Digit. Med.,
2 (2019) 92, doi: 10.1038/s41746-019-0172-3.
- H.A. Fayed, A.F. Atiya, Speed up grid-search for parameter
selection of support vector machines, Appl. Soft Comput.,
80 (2019) 202–210.
- K. Park, H. Heo, D.Y. Kim, D.R. Yang, Feasibility study of a
forward osmosis/crystallization/reverse osmosis hybrid process
with high-temperature operation: modeling, experiments, and
energy consumption, J. Membr. Sci., 555 (2018) 206–219.
- K. Park, Y.H. Jang, M.-g. Kim, D.R. Yang, S. Hong,
Comprehensive analysis of a hybrid FO/crystallization/RO
process for improving its economic feasibility to seawater
desalination, Water Res., 171 (2020) 115426, doi: 10.1016/j.watres.2019.115426.
- W. Suwaileh, N. Pathak, H. Shon, N. Hilal, Forward osmosis
membranes and processes: a comprehensive review of research
trends and future outlook, Desalination, 485 (2020) 114455, doi:
10.1016/j.desal.2020.114455.
- T. Yun, Y.-J. Kim, S. Lee, S. Hong, G.I. Kim, Flux behavior and
membrane fouling in pressure-assisted forward osmosis, Desal.
Water Treat., 52 (2014) 564–569.
- M. Tang, Q. Zhao, S.X. Ding, H. Wu, L. Li, W. Long, B. Huang,
An improved LightGBM algorithm for online fault detection of
wind turbine gearboxes, Energies, 13 (2020) 807, doi: 10.3390/en13040807.
- M. Xie, W.E. Price, LD. Nghiem, M. Elimelech, Effects of feed and
draw solution temperature and transmembrane temperature
difference on the rejection of trace organic contaminants by
forward osmosis, J. Membr. Sci., 438 (2013) 57–64.