References
- J.B. da Costa, S. Rodgher, L.A. Daniel, E.L.G. Espíndola, Toxicity
on aquatic organisms exposed to secondary effluent disinfected
with chlorine, peracetic acid, ozone and UV radiation,
Ecotoxicology, 23 (2014) 1803–1813.
- C.B. Fedler, R. Francis, D. Parekh, S. Blanchet, Review of
Potential Onsite Wastewater Disinfection Technologies Final
Report to the Texas Commission on Environmental Quality:
Texas Onsite Wastewater Treatment Research Council, Project
No. 582-11-11054, Lubbock, TX 79409, 2012.
- A.A. Al-Gheethi, A.N. Efaq, J.D. Bala, I. Norli, M.O. Abdel-Monem, M.O. Ab. Kadir, Removal of pathogenic bacteria from
sewage-treated effluent and biosolids for agricultural purposes,
Appl. Water Sci., 8 (2018) 76, doi: 10.1007/s13201-018-0698-6.
- H. Hashemi, A. Bovini, Y. Hung, M. Amin, A review on
wastewater disinfection, Int. J. Environ. Health Eng., 2 (2013)
1–9.
- Environmental Protection Agency, Water Treatment Manual:
Disinfection, EPA, Ireland, 2011.
- M.C. Collivignarelli, A. Abbà, G. Alloisio, E. Gozio, I. Benigna,
Disinfection in wastewater treatment plants: evaluation of
effectiveness and acute toxicity effects, Sustainability, 9 (2017)
1704, doi: 10.3390/su9101704.
- M. Kitis, Disinfection of wastewater with peracetic acid: a
review, Environ. Int., 30 (2004) 47–55.
- S. Rossi, M. Antonelli, V. Mezzanotte, C. Nurizzo, Peracetic acid
disinfection: a feasible alternative to wastewater chlorination,
Water Environ. Res., 79 (2007) 341–350.
- R.K. Chhetri, D. Thornberg, J. Berner, R. Gramstad, U. Öjstedt,
A.K. Sharma, H.R. Andersen, Chemical disinfection of
combined sewer overflow waters using performic acid or
peracetic acids, Sci. Total Environ., 490 (2014) 1065–1072.
- R. Crebelli, L. Conti, S. Monarca, D. Feretti, I. Zerbini, C. Zani,
E. Veschetti, D. Cutilli, M. Ottaviani, Genotoxicity of the
disinfection by-products resulting from peracetic acid - or
hypochlorite-disinfected sewage wastewater, Water Res.,
39 (2005) 1105–1113.
- A. Dell’Erba, D. Falsanisi, L. Liberti, M. Notarnicola, D. Santoro,
Disinfection by-products formation during wastewater
disinfection with peracetic acid, Desalination, 215 (2007)
177–186.
- L. Domínguez Henao, A. Turolla, M. Antonelli, Disinfection
by-products formation and ecotoxicological effects of effluents
treated with peracetic acid: a review, Chemosphere, 213 (2018)
25–40.
- R. Xue, H. Shi, Y. Ma, J. Yang, B. Hua, E.C. Inniss, C.D. Adams,
T. Eichholz, Evaluation of thirteen haloacetic acids and ten
trihalomethanes formation by peracetic acid and chlorine
drinking water disinfection, Chemosphere, 189 (2017) 349–356.
- L. Alexandrou, B.J. Meehan, O.A.H. Jones, Regulated and
emerging disinfection by-products in recycled waters, Sci. Total
Environ., 637–638 (2018) 1607–1616.
- W.N. Phatthalung, C. Musikavong, Emerging disinfection
by-products’ formation potential in raw water, wastewater, and
treated wastewater in Thailand, J. Environ. Sci. Health. Part A
Toxic/Hazard. Subst. Environ. Eng., 54 (2019) 745–758.
- X. Luan, X. Liu, C. Fang, W. Chu, Z. Xu, Ecotoxicological effects
of disinfected wastewater effluents: a short review of: in vivo
toxicity bioassays on aquatic organisms, Environ. Sci. Water
Res. Technol., 6 (2020) 2275–2286.
- G. de Souza Celente, G.S. Colares, P. da Silva Araújo,
Ê.L.Machado, E.A. Lobo, Acute ecotoxicity and genotoxicity
assessment of two wastewater treatment units, Environ. Sci.
Pollut. Res., 27 (2020) 10520–10527.
- T. Ohe, T. Watanabe, K. Wakabayashi, Mutagens in surface
waters: a review, Mutat. Res., 567 (2004) 109–149.
- R.M. Abdel-Massih, P.N. Melki, C. Afif, Z. Daoud, Detection
of genotoxicity in hospital wastewater of a developing country
using SOS Chromotest and Ames fluctuation test, J. Environ.
Eng. Ecol. Sci., 2 (2013) 4, doi: 10.7243/2050-1323-2-4.
- F.A. Atienzar, A.N. Jha, The random amplified polymorphic
DNA (RAPD) assay and related techniques applied to
genotoxicity and carcinogenesis studies: a critical review,
Mutat. Res., 613 (2006) 76–102.
- S. Cenkci, M. Yildiz, I.H. Ciǧerci, M. Konuk, A. Bozdaǧ, Toxic
chemicals-induced genotoxicity detected by random amplified
polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.)
seedlings, Chemosphere, 76 (2009) 900–906.
- S. Cenkci, M. Yildiz, I.H. Ciĝerci, A. Bozdaĝ, H. Terzi,
E.S.A. Terzi, Evaluation of 2,4-D and Dicamba genotoxicity
in bean seedlings using comet and RAPD assays, Ecotoxicol.
Environ. Saf., 73 (2010) 1558–1564.
- K. Affek, A. Muszyński, M. Załęska-Radziwiłł, N. Doskocz,
Evaluation of ecotoxicity and inactivation of bacteria during
ozonation of treated wastewater, Desal. Water Treat., 192 (2020)
176–184.
- D. Nasuhoglu, S. Isazadeh, P. Westlund, S. Neamatallah,
V. Yargeau, Chemical, microbial and toxicological assessment
of wastewater treatment plant effluents during disinfection by
ozonation, Chem. Eng. J., 346 (2018) 466–476.
- M. Avberšek, B. Žegura, M. Filipič, N. Uranjek-Ževart, E. Heath,
Determination of estrogenic potential in waste water without
sample extraction, J. Hazard. Mater., 260 (2013) 527–533.
- C. Emmanouil, M. Bekyrou, C. Psomopoulos, A. Kungolos,
An insight into ingredients of toxicological interest in personal
care products and a small–scale sampling survey of the Greek
market: delineating a potential contamination source for water
resources, Water, 11 (2019) 2501, doi: 10.3390/w11122501.
- P.A. Segura, A. García-Ac, A. Lajeunesse, D. Ghosh, C. Gagnon,
S. Sauvé, Determination of six anti-infectives in wastewater
using tandem solid-phase extraction and liquid chromatography-tandem mass spectrometry, J. Environ. Monit., 9 (2007)
307–313.
- K. Olańczuk-Neyman, B. Quant, Dezynfekcja ścieków, Seidel-
Przywecki Sp. z o.o., Warsaw, 2015 (in Polish).
- World Health Organization, Guidelines for the Safe Use of
Wastewater, Excreta and Greywater, 2006.
- PN-EN, Water Quality – Detection and Enumeration of
Escherichia coli and Coliform Bacteria – Part 3: Miniaturized
Method (Most Probable Number) for the Detection and
Enumeration of E. coli in Surface and Wastewater, ISO 9308,
1998.
- PN-EN, Water Quality – Enumeration of Clostridium perfringens
– Method Using Membrane Filtration, ISO 14189, 2016.
- PN-EN, Water Quality – Detection and Enumeration of
Intestinal Enterococci – Part 1: Miniaturized Method (Most
Probable Number) for Surface and Wastewater, ISO 7899, 1998.
- SOS Chromotest Procedure. S9 Activation and Express Strains.
Version 6.5, 2016. EBPI, Ontario, Canada.
- B. Jolibois, M. Guerbet, Evaluation of industrial, hospital
and domestic wastewater genotoxicity with the Salmonella
fluctuation test and the SOS Chromotest, Mutat. Res. Genet.
Toxicol. Environ. Mutagen., 565 (2005) 151–162.
- E. Kocak, Investigation of potential genotoxic activity using
the SOS Chromotest for real paracetamol wastewater and the
wastewater treated by the Fenton process, J. Environ. Health
Sci. Eng., 13 (2015) 1–5.
- OECD, Test No. 202: Daphnia sp. Acute Immobilisation Test,
OECD Guidelines for the Testing of Chemicals, Section 2,
OECD Publishing, Paris, 2004.
- C. Conte, I. Mutti, P. Puglisi, A. Ferrarin, G. Regina,
M.N. Maestri, DNA fingerprinting analysis by a PCR based
method for monitoring the genotoxic effects of heavy metals
pollution, Chemosphere, 37 (1998) 2739–2749.
- S. Monarca, D. Feretti, C. Collivignarelli, L. Guzzella,
I. Zerbini, G. Bertanza, R. Pedrazzani, Theinfluence of
different disinfectants on mutagenicity and toxicity of urban
wastewater, Water Res., 34 (2000) 4261–4269.
- S. Wilhelm, S. Jacob, M. Ziegler, H.R. Köhler, R. Triebskorn,
Influence of different wastewater treatment technologies on
genotoxicity and dioxin-like toxicity in effluent-exposed fish,
Environ. Sci. Eur., 30 (2018) 25, doi: 10.1186/s12302-018-0154-0.
- R.K. Chhetri, A. Baun, H.R. Andersen, Acute toxicity and risk
evaluation of the CSO disinfectants performic acid, peracetic
acid, chlorine dioxide and their by-products hydrogen
peroxide and chlorite, Sci. Total Environ., 677 (2019) 1–8.
- C.F. Campos, S. Morelli, E.O. De Campos Júnior, V.S.V. Santos,
C.R. De Morais, M.C. Cunha, H.N. Souto, L.A. Pavanin,
A.M. Bonetti, B.B. Pereira, Assessment of the genotoxic potential
of water courses impacted by wastewater treatment effluents
using micronucleus assay in plants from the species Tradescantia,
J. Toxicol. Environ. Health Part A, 82 (2019) 752–759.
- R.K. Chhetri, A. Baun, H.R. Andersen, Algal toxicity of the
alternative disinfectants performic acid (PFA), peracetic acid
(PAA), chlorine dioxide (ClO2) and their by-products hydrogen
peroxide (H2O2) and chlorite (ClO2−), Int. J. Hyg. Environ.
Health, 220 (2017) 570–574.
- R.I. Amann, W. Ludwig, K.H. Schleifer, Phylogenetic
identification and in situ detection of individual microbial cells
without cultivation, Microbiol. Rev., 59 (1995) 143–169.
- M. Bhuvaneshwari, E. Eltzov, B. Veltman, O. Shapiro,
G. Sadhasivam, M. Borisover, Toxicity of chlorinated and
ozonated wastewater effluents probed by genetically modified
bioluminescent bacteria and cyanobacteria Spirulina sp., Water
Res., 164 (2019) 114910, doi: 10.1016/j.watres.2019.114910.
- R. Maurício, J. Jorge, R. Dias, J.P. Noronha, L. Amaral,
M.A. Daam, A.P. Mano, M.S. Diniz, The use of peracetic acid
for estrogen removal from urban wastewaters: E2 as a case
study, Environ. Monit. Assess., 192 (2020) 114, doi: 10.1007/s10661-020-8079-7.
- P. Ragazzo, N. Chiucchini, V. Piccolo, M. Spadolini, S. Carrer,
F. Zanon, R. Gehr, Wastewater disinfection: long-term laboratory
and full-scale studies on performic acid in comparison with
peracetic acid and chlorine, Water Res., 184 (2020) 116169,
doi: 10.1016/j.watres.2020.116169.