References

  1. K. Surya Nair, M. Basavaraju, A. Adani, Sustainable treatment of paint industry wastewater: current techniques and challenges, J. Environ. Manage., 296 (2021) 113105, doi: 10.1016/j.jenvman.2021.113105.
  2. T.E. Aniyikaiye, T. Oluseyi, J.O. Odiyo, J.N. Edokpayi, Physicochemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria, Int. J. Environ. Res. Public Health, 16 (2019) 1235, doi: 10.3390/ijerph16071235.
  3. M.A. Aboulhassan, S. Souabi, A. Yaacoubi, M. Baudu, Treatment of paint manufacturing wastewater by the combination of chemical and biological process, Int. J. Sci. Environ. Technol., 3 (2014) 1747–1758.
  4. S. Popli, U.D. Patel, Destruction of azo dyes by anaerobic– aerobic sequential biological treatment: a review, Int. J. Environ. Sci. Technol., 12 (2015) 405–420.
  5. D. Krithika, L. Philip, Treatment of wastewater from water based paint industries using submerged attached growth reactor, Int. Biodeterior. Biodegrad., 107 (2016) 31–41.
  6. O. Dovletoglou, C. Philippopoulos, H. Grigoropoulou, Coagulation for treatment of paint industry wastewater, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 37 (2002) 1361–1377.
  7. O.Y. Balik, S. Aydin, Coagulation/flocculation optimization and sludge production for pre-treatment of paint industry wastewater, Desal. Water Treat., 57 (2016) 12692–12699.
  8. I.G. Ezemagu, M.I. Ejimofor, M.C. Menkiti, Turbidimetric study for the decontamination of paint effluent (PE) using mucuna seed coagulant (MSC): statistical design and coag-flocculation modelling, Environ. Adv., 2 (2020) 100023, doi: 10.1016/j.envadv.2020.100023.
  9. B.K. Korbahti, N. Aktas, A. Tanyolaç, Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology, J. Hazard. Mater., 148 (2007) 83–90.
  10. B.K. Korbahti, A. Tanyolaç, Electrochemical treatment of simulated industrial paint wastewater in a continuous tubular reactor, Chem. Eng. J., 148 (2009) 444–451.
  11. L.F. da Silva, A.D. Barbosa, H.M. de Paula, L.L. Romualdo, L.S. Andrade, Treatment of paint manufacturing wastewater by coagulation/electrochemical methods: proposals for disposal and/or reuse of treated water, Water Res., 101 (2016) 467–475.
  12. A.D. Barbosa, L.F. da Silva, H.M. de Paula, L.L. Romualdo, G. Sadoyama, L.S. Andrade, Combined use of coagulation (M. oleifera) and electrochemical techniques in the treatment of industrial paint wastewater for reuse and/or disposal, Water Res., 145 (2018) 153–161.
  13. I.S. de Oliveira, L. Viana, C. Verona, V.L.V. Fallavena, C.M.N. Azevedo, M. Pires, Alkydic resin wastewaters treatment by Fenton and photo-Fenton processes, J. Hazard. Mater., 146 (2007) 564–568.
  14. U. Kurt, Y. Avsar, M.T. Gonullu, Treatability of water-based paint wastewater with Fenton process in different reactor types, Chemosphere, 64 (2006) 1536–1540.
  15. A. Marco, R. Erick, A. Carlos, Advanced Oxidation Processes (AOPs) for Removal of Pesticides From Aqueous Media, M. Stoytcheva, Ed., Pesticides – Formulations, Effects, Fate, London, 2011. doi: 10.5772/13597.
  16. D.P. Zagklis, P.G. Koutsoukos, C.A. Paraskeva, A combined coagulation/flocculation and membrane filtration process for the treatment of paint industry wastewaters, Ind. Eng. Chem. Res., 51 (2012) 15456–15462.
  17. J. Zou, H. Zhu, F. Wang, H. Sui, J. Fan, Preparation of a new inorganic–organic composite flocculant used in solid–liquid separation for waste drilling fluid, Chem. Eng. J., 171 (2011) 350–356.
  18. J. Addai-Mensah, C.A. Prestidge, Structure Formation in Dispersed System, H. Techemesser, B. Dobias, Eds., Coagulation and Flocculation, 2nd ed., Taylor & Francis Group, Boca Raton, 2005.
  19. M. Natalia, D. Olli, Environmental implications of aggregations phenomena: current understanding, Curr. Opin. Colloid Interface Sci., 11 (2006) 246–266.
  20. P.A. Moussas, A.I. Zouboulis, A new inorganic–organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA), Water Res., 43 (2009) 3511–3524.
  21. Y. Wang, B.Y. Gao, Q.Y. Yue, J.C. Wei, W.Z. Zhou, Novel composite flocculent polyferric chloride–polydimethyldiallylammonium chloride (PFC – PDADMAC): its characterization and flocculation efficiency, Water Pract. Technol., 1 (2006) 1–9.
  22. N.D. Tzoupanos, A.I. Zouboulis, Preparation, characterisation and application of novel composite coagulants for surface water treatment, Water Res., 45 (2011) 3614–3626.
  23. W.Y. Yang, J.W. Qian, Z.Q. Shen, A novel flocculant of Al(OH)3 polyacrylamide ionic hybrid, J. Colloid Interface Sci., 273 (2004) 400–405.
  24. K.E. Lee, T.T. Teng, N. Morad, B.T. Poh, Y.F. Hong, Flocculation of kaolin in water using novel calcium chloride–polyacrylamide (CaCl2 PAM) hybrid polymer, Sep. Purif. Technol., 75 (2010) 346–351.
  25. B.Y. Gao, Q.Y. Yue, Effect of SO42–/Al3+ ratio and OH_/Al3+ value on the haracterization of coagulant poly-aluminum-chloridesulfate (PACS) and its coagulation performance in water treatment, Chemosphere, 61 (2005) 579–584.
  26. K. Thirugnanasambandham, V. Sivakumar, J.P. Maran, Response surface modelling and optimization of treatment of meat industry wastewater using electrochemical treatment method, J. Taiwan Inst. Chem. Eng., 46 (2015) 160–167.
  27. N. Yusoff, M. Ramasamy, S. Yusup, Taguchi’s parametric design approach for the selection of optimization variables in a refrigerated gas plant, Chem. Eng. Res. Des., 89 (2011) 665–675.
  28. J.M. Parks, On stochastic optimization: Taguchi methods™ demystified; its limitations and fallacy clarified, Probab. Eng. Mech., 16 (2001) 87–101.
  29. K. Yang, E.C. Teo, F.K. Fuss, Application of Taguchi method in optimization of cervical ring cage, J. Biomech., 40 (2007) 3251–3256.
  30. A. Deghles, U. Kurt, Treatment of raw tannery wastewater by electrocoagulation technique: optimization of effective parameters using Taguchi method, Desal. Water Treat., 57 (2016) 14798–14809.
  31. F. Özyonar, H. Muratcobanoglu, O. Gökkus, Taguchi approach for color removal using electrocoagulation with different electrode connection types, Fresenius Environ. Bull., 26 (2017) 7600–7607.
  32. H.Y. Yen, C.P. Lin, Adsorption of Cd(II) from wastewater using spent coffee grounds by Taguchi optimization, Desal. Water Treat., 57 (2016) 11154–11161.
  33. F. Özyonar, Optimization of operational parameters of electrocoagulation process for real textile wastewater treatment using Taguchi experimental design method, Desal. Water Treat., 57 (2016) 2389–2399.
  34. Ö. Apaydin, E. Özkan, Landfill leachate treatment with electrocoagulation: optimization by using Taguchi method, Desal. Water Treat., 173 (2020) 65–76.
  35. M.P. Elizalde-Gonzalez, L.E. Garcia-Diaz, Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area, Chem. Eng. J., 163 (2010) 55–61.
  36. S. Irdemez, Y.S. Yildiz, V. Tosunoglu, Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes, Sep. Purif. Technol., 52 (2006) 394–401.
  37. APHA, AWWA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, D.C., 1998.
  38. O. Gökkus, Y.S. Yıldız, B. Yavuz, Optimization of chemical coagulation of real textile wastewater using Taguchi experimental design method, Desal. Water Treat., 49 (2012) 263–271.
  39. K.E. Lee, N. Morad, T.T. Teng, B.T. Poh, Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: a review, Chem. Eng. J., 203 (2012) 370–386.
  40. G. Eremektar, S. Goksen, F. Babuna, S. Dogruel, Coagulation– flocculation of wastewaters from a water-based paint and allied products industry and its effect on inert COD, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 41 (2006) 1843–1852.
  41. M.A. El-Shazly, E.A. Hasanin, M.M. Kamel, Appropriate technology for industrial wastewater treatment of paint industry, Am. J. Agric. Environ. Sci., 8 (2010) 597–601.
  42. A.I. Zouboulis, N.D. Tzoupanos, Polyaluminium silicate chloride—a systematic study for the preparation and application of an efficient coagulant for water or wastewater treatment, J. Hazard. Mater., 162 (2009) 1379–1389.
  43. P. Zhang, H.H. Hahn, E. Hoffmann, G. Zeng, Influence of some additives to aluminium species distribution in aluminium coagulants, Chemosphere, 57 (2004) 1489–1494.
  44. B.Y. Gao, Q.Y. Yue, Y. Wang, Coagulation performance of polyaluminum silicate chloride (PASiC) for water and wastewater treatment, Sep. Purif. Technol., 56 (2007) 225–230.
  45. W.P. Cheng, F.H. Chi, C.C. Li, R.F. Yu, A study on the removal of organic substances from low-turbidity and low-alkalinity water with metalpolysilicate coagulants, Colloids Surf., A, 312 (2008) 238–244.