References

  1. L. Liu, Y. Wan, Y. Xie, R. Zhai, B. Zhang, J. Liu, The removal of dye from aqueous solution using alginate-halloysite nanotube beads, Chem. Eng. J., 187 (2012) 210–216.
  2. M. Zhao, P. Liu, Adsorption behavior of Methylene Blue on halloysite nanotubes, Microporous Mesoporous Mater., 112 (2008) 419–424.
  3. Y. Bulut, N. Gözübenli, H. Aydın, Equilibrium and kinetics studies for adsorption of Direct Blue 71 from aqueous solution by wheat shells, J. Hazard. Mater., 144 (2007) 300–306.
  4. Y. Liu, J. Jia, T. Gao, X. Wang, J. Yu, D. Wu, F. Li, Rapid, selective adsorption of Methylene Blue from aqueous solution by durable nanofibrous membranes, J. Chem. Eng. Data, 65 (2020) 3998–4008.
  5. M. Munir, M.F. Nazar, M.N. Zafar, M. Zubair, M. Ashfaq, A. Hosseini-Bandegharaei, S.U.-D. Khan, A. Ahmad, Effective adsorptive removal of Methylene Blue from water by didodecyldimethylammonium bromide-modified brown clay, ACS Omega, 5 (2020) 16711–16721.
  6. S. Asadi, S. Eris, S. Azizian, Alginate-based hydrogel beads as a biocompatible and efficient adsorbent for dye removal from aqueous solutions, ACS Omega, 3 (2018) 15140–15148.
  7. X. Gao, C. Guo, J. Hao, Z. Zhao, H. Long, M. Li, Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives, Int. J. Biol. Macromol., 164 (2020) 4423–4434.
  8. C.S.C. Chiew, P.E. Poh, P. Pasbakhsh, B.T. Tey, H.K. Yeoh, E.S. Chan, Physicochemical characterization of halloysite/alginate bionanocomposite hydrogel, Appl. Clay Sci., 101 (2014) 444–454.
  9. T. Gotoh, K. Matsushima, K. Kikuchi, Preparation of alginatechitosan hybrid gel beads and adsorption of divalent metal ions, Chemosphere, 55 (2004) 135–140.
  10. S. Takka, A. Gürel, Evaluation of chitosan/alginate beads using experimental design: formulation and in vitro characterization, AAPS PharmSciTech, 11 (2010) 460–466.
  11. W. Wang, S. Fan, Y. Zhang, C. Fan, Z. Huang, H. Hu, Y. Qin, Fe3+-bridged cellulose-alginate composite gel beads as stable and effective photo-Fenton catalysts, ACS Appl. Polym. Mater., 3 (2021) 5696–5706.
  12. H. Chen, J. Zhao, J. Wu, H. Yan, Selective desorption characteristics of halloysite nanotubes for anionic azo dyes, RSC Adv., 4 (2014) 15389–15393.
  13. W. Jinhua, Z. Xiang, Z. Bing, Z. Yafei, Z. Rui, L. Jindun, C. Rongfeng, Rapid adsorption of Cr(VI) on modified halloysite nanotubes, Desalination, 259 (2010) 22–28.
  14. M. Massaro, R. Noto, S. Riela, Past, present and future perspectives on halloysite clay minerals, Molecules, 25 (2020) 4863, doi: 10.3390/molecules25204863.
  15. Y. Zhao, E. Abdullayev, A. Vasiliev, Y. Lvov, Halloysite nanotubule clay for efficient water purification, J. Colloid Interface Sci., 406 (2013) 121–129.
  16. C.S.C. Chiew, H.K. Yeoh, P. Pasbakhsh, K. Krishnaiah, P.E. Poh, B.T. Tey, E.S. Chan, Halloysite/alginate nanocomposite beads: kinetics, equilibrium and mechanism for lead adsorption, Appl. Clay Sci., 119 (2016) 301–310.
  17. Y. Wu, Y. Zhang, J. Ju, H. Yan, X. Huang, Y. Tan, Advances in halloysite nanotubes-polysaccharide nanocomposite preparation and applications, Polymers (Basel), 11 (2019) 987, doi: 10.3390/polym11060987.
  18. O. Owoseni, E. Nyankson, Y. Zhang, D.J. Adams, J. He, L. Spinu, G.L. McPherson, A. Bose, R.B. Gupta, V.T. John, Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions, J. Colloid Interface Sci., 463 (2016) 288–298.
  19. G. Polat, Y.S. Açıkel, Synthesis and characterization of magnetic halloysite-alginate beads for the removal of lead(II) ions from aqueous solutions, J. Polym. Environ., 27 (2019) 1971–1987.
  20. Q. Liu, J. Wang, C. Duan, T. Wang, Y. Zhou, A novel cationic graphene modified cyclodextrin adsorbent with enhanced removal performance of organic micropollutants and high antibacterial activity, J. Hazard. Mater., 426 (2022) 128074, doi: 10.1016/j.jhazmat.2021.128074.
  21. M.A. Al-Ghouti, R.S. Al-Absi, Mechanistic understanding of the adsorption and thermodynamic aspects of cationic Methylene Blue dye onto cellulosic olive stones biomass from wastewater, Sci. Rep., 10 (2020) 15928, doi: 10.1038/ s41598-020-72996-3.
  22. E.N. El Qada, S.J. Allen, G.M. Walker, Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm, Chem. Eng. J., 124 (2006) 103–110.
  23. F. Hafeez, H. Farheen, F. Mahmood, T. Shahzad, M. Shahid, M. Iqbal, S. Rasul, H. Manzoor, S. Hussain, Isolation and characterization of a lead (Pb) tolerant Pseudomonas aeruginosa strain HF5 for decolorization of reactive red-120 and other azo dyes, Ann. Microbiol., 68 (2018) 943–952.
  24. M. Wawrzkiewicz, P. Bartczak, T. Jesionowski, Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent, Int. J. Biol. Macromol., 99 (2017) 754–764.
  25. N. Mirzaei, A.H. Mahvi, H. Hossini, Equilibrium and kinetics studies of Direct Blue 71 adsorption from aqueous solutions using modified zeolite, Adsorpt. Sci. Technol., 36 (2018) 80–94.
  26. H. Biglari, N. Javan, R. Khosravi, A. Zarei, Direct Blue 71 removal from aqueous solutions by adsorption on pistachio hull waste: equilibrium, kinetic and thermodynamic studies, Iran. J. Health Sci., 4 (2016) 55–70.
  27. A. Mojiri, H. Aziz, Wastewater Engineering: Advanced Wastewater Treatment Systems, IJSR Publications, Penang, 2014.
  28. S. Velusamy, A. Roy, S. Sundaram, T. Kumar Mallick, A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment, Chem. Rec., 21 (2021) 1570–1610.
  29. R.R. Elmorsi, S.T. El-Wakeel, W.A. Shehab El-Dein, H.R. Lotfy, W.E. Rashwan, M. Nagah, S.A. Shaaban, S.A. Sayed Ahmed, I.Y. El-Sherif, K.S. Abou-El-Sherbini, Adsorption of Methylene Blue and Pb2+ by using acid-activated Posidonia oceanica waste, Sci. Rep., 9 (2019) 3356, doi: 10.1038/s41598-019-39945-1.
  30. L. Cui, Y. Wang, L. Hu, L. Gao, B. Du, Q. Wei, Mechanism of Pb(II) and Methylene Blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide, RSC Adv., 5 (2015) 9759–9770.
  31. C.S. Nkutha, N.D. Shooto, E.B. Naidoo, Adsorption studies of Methylene Blue and lead ions from aqueous solution by using mesoporous coral limestones, S. Afr. J. Chem. Eng., 34 (2020) 151–157.
  32. K. Al-Zawahreh, Y. Al-Degs, M.T. Barral, R. Paradelo, Optimization of Direct Blue 71 sorption by organic richcompost following multilevel multifactor experimental design, Arabian J. Chem., 15 (2022) 103468, doi: 10.1016/j.arabjc.2021.103468.
  33. H. Ebadollahzadeh, M. Zabihi, Competitive adsorption of Methylene Blue and Pb(II) ions on the nano-magnetic activated carbon and alumina, Mater. Chem. Phys., 248 (2020) 122893, doi: 10.1016/j.matchemphys.2020.122893.
  34. J.-L. Gong, Y.-L. Zhang, Y. Jiang, G.-M. Zeng, Z.-H. Cui, K. Liu, C.-H. Deng, Q.-Y. Niu, J.-H. Deng, S.-Y. Huan, Continuous adsorption of Pb(II) and Methylene Blue by engineered graphite oxide coated sand in fixed-bed column, Appl. Surf. Sci., 330 (2015) 148–157.
  35. L. Shi, D. Wei, H.H. Ngo, W. Guo, B. Du, Q. Wei, Application of anaerobic granular sludge for competitive biosorption of Methylene Blue and Pb(II): fluorescence and response surface methodology, Bioresour. Technol., 194 (2015) 297–304.
  36. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  37. X. Chen, M.F. Hossain, C. Duan, J. Lu, Y.F. Tsang, M.S. Islam, Y. Zhou, Isotherm models for adsorption of heavy metals from water - a review, Chemosphere, 307 (2022) 135545, doi: 10.1016/j.chemosphere.2022.135545.
  38. G. McKay, B. Al Duri, Prediction of multicomponent adsorption equilibrium data using empirical correlations, Chem. Eng. J., 41 (1989) 9–23.
  39. G.-N. Moroi, E. Avram, L. Bulgariu, Adsorption of heavy metal ions onto surface-functionalised polymer beads. I. Modelling of equilibrium isotherms by using non-linear and linear regression analysis, Water Air Soil Pollut., 227 (2016) 260, doi: 10.1007/s11270-016-2953-5.
  40. G. Polat, Y.S. Acikel, Synthesis of magnetic halloysite nanotube- alginate hybrid beads: use in the removal of Methylene Blue from aqueous media, Int. J. Food Biosyst. Eng., 5 (2017) 15–22.
  41. G. Polat, E. Turkes, Y. Sağ Açıkel, Investigation of Adsorption Kinetics and Equilibrium for Removal of Anionic Dye Direct Blue 71 from Aqueous Media Using Magnetic Halloysite Nanotubes-Alginate Beads, Insac Natural and Technology Sciences, Duvar Publications, İzmir, 2022, pp. 215–240.
  42. H. Chen, Y. Zhou, J. Wang, J. Lu, Y. Zhou, Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+, RSC Adv., 389 (2020) 121897, doi: 10.1016/j.jhazmat.2019.121897.
  43. W. Huang, Y. Hu, Y. Li, Y. Zhou, D. Niu, Z. Lei, Z. Zhang, Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, Methylene Blue and copper: the roles of cavity and surface functional groups, J. Taiwan Inst. Chem. Eng., 82 (2018) 189–197.
  44. R. Chen, J. Cai, Q. Li, X. Wei, H. Min, Q. Yong, Co-adsorption behaviors and mechanisms of Pb(II) and Methylene Blue onto a biodegradable multi-functional adsorbent with temperaturetunable selectivity, RSC Adv., 10 (2020) 35636–35645.
  45. R.F. Fard, M.E.K. Sar, M. Fahiminia, N. Mirzaei, N. Yousefi, H.J. Mansoorian, N. Khanjani, S. Rezaei, S.K. Ghadiri, Efficiency of multi walled carbon nanotubes for removing Direct Blue 71 from aqueous solutions, Eurasian J. Anal. Chem., 13 (2018), doi: 10.20933/ejac/85010.
  46. A.A. Zarei, H. Biglari, A. Biglari, G. Ebrahimzadeh, M.R. Narooie, A. Yari, E. Mehrizi, M. Ahamadabadi, M.M. Baneshi, M. Mobini, The removal of blue 71 from aqueous solution using cotton pod ash, Pollut. Res., 36 (2017) 489–497.