References

  1. E. Pagalan Jr., M. Sebron, S. Gomez, S.J. Salva, R. Ampusta, A.J. Macarayo, C. Joyno, A. Ido, R. Arazo, Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye, Ind. Crops Prod., 145 (2020) 111953, doi: 10.1016/j.indcrop.2019.111953.
  2. M. Novotna, P. Knotek, T. Hanzlicek, P. Kutalek, I. Perna, K. Melanova, E. Cernoskova, K. Kopecka, TiO2 modified geopolymers for the photocatalytic dye decomposition, Crystals, 11 (2021) 1511, doi: 10.3390/cryst11121511.
  3. D.C. Roy, S.K. Biswas, A.K. Saha, B. Sikdar, M. Rahman, A.K. Roy, Z.H. Prodhan, S.-S. Tang, Biodegradation of Crystal violet dye by bacteria isolated from textile industry effluents, PeerJ, 6 (2018) e5015, doi: 10.7717/peerj.5015.
  4. M. Ensafi Avval, P.N. Moghadam, M.M. Baradarani, Synthesis of a new nanocomposite based-on graphene-oxide for selective removal of Pb2+ ions from aqueous solutions, Polym. Compos., 40 (2018) 730–737.
  5. H. Ahmad, M. Zahid, Z.A. Rehan, A. Rashid, S. Akram, M.M.H. Aljohani, S.K. Mustafa, T. Khalid, N.R. Abdelsalam, R.Y. Ghareeb, M.S. AL-Harbi, Preparation of polyvinylidene fluoride nano-filtration membranes modified with functionalized graphene oxide for textile dye removal, Membranes, 12 (2022) 224, doi: 10.3390/membranes12020224.
  6. N.A.M. Zainuddin, N. Azmi, S.W. Puasa, S.R.M. Yatim, Response surface methodology and kinetic study for removal of colour and chemical oxygen demand from coffee wastewater by using spent coffee grounds, Desal. Water Treat., 257 (2022) 228–242.
  7. M. El Khomri, N. El Messaoudi, A. Dbik, S. Bentahar, A. Lacherai, N. Faska, A. Jada, Regeneration of argan nutshell and almond shell using HNO3 for their reusability to remove cationic dye from aqueous solution, Chem. Eng. Commun., 209 (2022) 1304–1315.
  8. S.N. Jain, S.R. Tamboli, D.S. Sutar, S.R. Jadhav, J.V. Marathe, A.A. Shaikh, A.A. Prajapati, Batch and continuous studies for adsorption of anionic dye onto waste tea residue: kinetic, equilibrium, breakthrough and reusability studies, J. Cleaner Prod., 252 (2020) 119778, doi: 10.1016/j.jclepro.2019.119778.
  9. J.Z. Ma, L.Y. Hou, P. Li, S.M. Zhang, X.Y. Zheng, Modified fruit pericarp as an effective biosorbent for removing azo dye from aqueous solution: study of adsorption properties and mechanisms, Environ. Eng. Res., 27 (2022) 200634, doi: 10.4491/eer.2020.634.
  10. H. Singh, S. Choden, Comparison of adsorption behaviour and kinetic modeling of bio-waste materials using basic dye as adsorbate, Indian J. Chem. Technol., 21 (2014) 359–367.
  11. K.-W. Jung, B.H. Choi, M.-J. Hwang, J.-W. Choi, S.-H. Lee, J.-S. Chang, K.-H. Ahn, Adsorptive removal of anionic azo dye from aqueous solution using activated carbon derived from extracted coffee residues, J. Cleaner Prod., 166 (2017) 360–368.
  12. B. Sukhbaatar, B. Yoo, J.-H. Lim, Metal-free high-adsorptioncapacity adsorbent derived from spent coffee grounds for Methylene blue, RSC Adv., 11 (2021) 5118–5127.
  13. A.S. Franca, L.S. Oliveira, M.E. Ferreira, Kinetics and equilibrium studies of Methylene blue adsorption by spent coffee grounds, Desalination, 249 (2009) 267–272.
  14. C.-H. Chiang, J. Chen, J.-H. Lin, Preparation of pore-size tunable activated carbon derived from waste coffee grounds for high adsorption capacities of organic dyes, J. Environ. Chem. Eng., 8 (2020) 103929, doi: 10.1016/j.jece.2020.103929.
  15. K.-W. Jung, B.H. Choi, M.-J. Hwang, T.-U. Jeong, K.-H. Ahn, Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and Methylene blue, Bioresour. Technol., 219 (2016) 185–195.
  16. A. Reffas, V. Bernardet, B. David, L. Reinert, M.B. Lehocine, M. Dubois, N. Batisse, L. Duclaux, Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of Methylene blue and Nylosan Red N-2RBL, J. Hazard. Mater., 175 (2010) 779–788.
  17. R. Bushra, S. Mohamad, Y. Alias, Y. Jin, M. Ahmad, Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: a review, Microporous Mesoporous Mater., 319 (2021) 111040, doi: 10.1016/j.micromeso.2021.111040.
  18. Q. Chen, Y. Zhao, Q. Xie, C. Liang, Z. Zong, Polyethyleneimine grafted starch nanocrystals as a novel biosorbent for efficient removal of methyl blue dye, Carbohydr. Polym., 273 (2021) 118579, doi: 10.1016/j.carbpol.2021.118579.
  19. L. Hao, P. Wang, S. Valiyaveettil, Successive extraction of As(V), Cu(II) and P(V) ions from water using spent coffee powder as renewable bioadsorbents, Sci. Rep., 7 (2017) 42881, doi: 10.1038/srep42881.
  20. Z. Chen, J. Zeng, Z.B. Zhang, Z.J. Zhang, S. Ma, C.M. Tang, J.Q. Xu, Preparation and application of polyethyleneiminemodified corncob magnetic gel for removal of Pb(II) and Cu(II) ions from aqueous solution, RSC Adv., 12 (2022) 1950–1960.
  21. S. Wong, H.H. Tumari, N. Ngadi, N.B. Mohamed, O. Hassan, R. Mat, N.A. Saidina Amin, Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL), J. Cleaner Prod., 206 (2019) 394–406.
  22. F. Taleb, M. Ammar, M.B. Mosbah, R.B. Salem, Y. Moussaoui, Chemical modification of lignin derived from spent coffee grounds for Methylene blue adsorption, Sci. Rep., 10 (2020) 11048, doi: 10.1038/s41598-020-68047-6.
  23. M.S. Akindolie, H.J. Choi, Surface modification of spent coffee grounds using phosphoric acid for enhancement of Methylene blue adsorption from aqueous solution, Water Sci. Technol., 85 (2022) 1218–1234.
  24. M. Kumar, H.S. Dosanjh, H. Singh, Biopolymer modified transition metal spinel ferrites for removal of fluoride ions from water, Environ. Nanotechnol. Monit. Manage., 12 (2019) 100237, doi: 10.1016/j.enmm.2019.100237.
  25. V.K. Rattan, H. Singh, Adsorption of nickel from aqueous solutions using low cost biowaste adsorbents, Water Qual. Res. J., 46 (2011) 239–249.
  26. S. Abuzerr, M. Darwish, A.H. Mahvi, Simultaneous removal of cationic Methylene blue and anionic Reactive Red 198 dyes using magnetic activated carbon nanoparticles: equilibrium, and kinetics analysis, Water Sci. Technol., 2 (2018) 534–545.
  27. S. Wong, Y. Lim, N. Ngadi, R. Mat, O. Hassan, I.M. Inuwa, N.B. Mohamed, J.H. Low, Removal of acetaminophen by activated carbon synthesized from spent tea leaves: equilibrium, kinetics and thermodynamics studies, Powder Technol., 338 (2018) 878–886.
  28. R. Lafi, A. ben Fradj, A. Hafiane, B.H. Hameed, Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution, Korean J. Chem. Eng., 31 (2014) 2198–2206.
  29. G. Wang, G. Li, Y. Huan, C. Hao, W. Chen, Acrylic acid functionalized graphene oxide: high-efficient removal of cationic dyes from wastewater and exploration on adsorption mechanism, Chemosphere, 261 (2020) 127736, doi: 10.1016/j.chemosphere.2020.127736.
  30. Z. Dai, P.-G. Ren, H. Zhang, X. Gao, Y.-L. Jin, Nitrogen-doped and hierarchically porous carbon derived from spent coffee ground for efficient adsorption of organic dyes, Carbon Lett., 31 (2021) 1249–1260.
  31. X. Huang, B.H. Li, S.B. Wang, X.Y. Yue, Z.G. Yu, X.J. Deng, J.M. Ma, Facile in-situ synthesis of PEI-Pt modified bacterial cellulose bio-adsorbent and its distinctly selective adsorption of anionic dyes, Colloids Surf., A, 586 (2020) 124163, doi: 10.1016/j.colsurfa.2019.124163.
  32. C.Q. Hao, G.F. Li, G.L. Wang, W. Chen, S.S. Wang, Preparation of acrylic acid modified alkalized MXene adsorbent and study on its dye adsorption performance, Colloids Surf., A, 632 (2022) 127730, doi: 10.1016/j.colsurfa.2021.127730.
  33. S. Zhou, J. Yin, Q. Ma, B. Baihetiyaer, J. Sun, Y. Zhang, Y. Jiang, J. Wang, X. Yin, Montmorillonite-reduced graphene oxide composite aerogel (M−rGO): a green adsorbent for the dynamic removal of cadmium and Methylene blue from wastewater, Sep. Purif. Technol., 296 (2022) 121416, doi: 10.1016/j.seppur.2022.121416.
  34. T. Shahnaz, D. Bedadeep, S. Narayanasamy, Investigation of the adsorptive removal of Methylene blue using modified nanocellulose, Int. J. Biol. Macromol., 200 (2022) 162–171.
  35. A. Kausar, S.U. Rehman, F. Khalid, A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.N. Bhatti, S.M. Ibrahim, M. Iqbal, Cellulose, clay and sodium alginate composites for the removal of Methylene blue dye: experimental and DFT studies, Int. J. Biol. Macromol., 209 (2022) 576–585.
  36. X. Wan, Z. Rong, K. Zhu, Y. Wu, Chitosan-based dual network composite hydrogel for efficient adsorption of Methylene blue dye, Int. J. Biol. Macromol., 222 (2022) 725–735.
  37. W.B. Wang, G.Y. Tian, Z.F. Zhang, A.Q. Wang, A simple hydrothermal approach to modify palygorskite for highefficient adsorption of Methylene blue and Cu(II) ions, Chem. Eng. J., 265 (2015) 228–238.
  38. H.Y. Zhu, R. Jiang, J.B. Li, Y.Q. Fu, S.T. Jiang, J. Yao, Magnetically recyclable Fe3O4/Bi2S3 microspheres for effective removal of Congo red dye by simultaneous adsorption and photocatalytic regeneration, Sep. Purif. Technol., 179 (2017) 184–193.
  39. J.W. Fu, Z.H. Chen, M.H. Wang, S.J. Liu, J.H. Zhang, J.N. Zhang, R.P. Han, Q. Xu, Adsorption of Methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis, Chem. Eng. J., 259 (2015) 53–61.
  40. G.Z. Kyzas, N.K. Lazaridis, A.C. Mitropoulos, Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: equilibrium, reuse and thermodynamic approach, Chem. Eng. J., 189 (2012) 148–159.
  41. S. Wong, N.A. Ghafar, N. Ngadi, F.A. Razmi, I.M. Inuwa, R. Mat, N.A.S. Amin, Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste, Sci. Rep., 10 (2020) 2928, doi: 10.1038/s41598-020-60021-6.