References

  1. V. Eyupoglu, A. Unal, E. Polat, B. Eren, R.A. Kumbasar, An efficient cobalt separation using PVDF-co-HFP based ultrafiltration polymer inclusion membrane by room temperature ionic liquids, Sep. Purif. Technol., 303 (2022) 122201, doi: 10.1016/j.seppur.2022.122201.
  2. J.L. Maguire, R.A. Collins, Effects of cobalt hexammine on folding and self-cleavage of the Neurospora VS ribozyme, J. Mol. Biol., 309 (2001) 45–56.
  3. N. Basu, M. Abare, S. Buchanan, D. Cryderman, D.H. Nam, S. Sirkin, S. Schmitt, H. Hu, A combined ecological and epidemiologic investigation of metals exposure amongst indigenous peoples near the Marlin Mine in Western Guatemala, Sci. Total Environ., 409 (2010) 70–77.
  4. R. Aplin, T.D. Waite, Comparison of three advanced oxidation processes for degradation of textile dyes, Water Sci. Technol., 42 (2000) 345–354.
  5. S. Satheesh Babu, C. Mohandass, A.S. Vijayaraj, M.A. Dhale, Detoxification and color removal of Congo red by a novel Dietzia sp. (DTS26) – a microcosm approach, Ecotoxicol. Environ. Saf., 114 (2015) 52–60.
  6. O. Aksu, N.C. Yildirim, N. Yildirim, D. Danabas, S. Danabas, Biochemical response of crayfish Astacus leptodactylus exposed to textile wastewater treated by indigenous white rot fungus Coriolus versicolor, Environ. Sci. Pollut. Res. Int., 22 (2015) 2987–2993.
  7. A.A.O. Eletta, J.O. Ighalo, A review of fish scales as a source of biosorbent for the removal of pollutants from industrial effluents, J. Res. Inf. Civ. Eng., 16 (2019) 2479–2510.
  8. E. Pehlivan, G. Arslan, Removal of metal ions using lignite in aqueous solution—low cost biosorbents, Fuel Process. Technol., 88 (2007) 99–106.
  9. M. Soylak, M. Tuzen, D. Mendil, I. Turkekul, Biosorption of heavy metals on Aspergillus fumigatus immobilized Diaion HP-2MG resin for their atomic absorption spectrometric determinations, Talanta, 70 (2006) 1129–1135.
  10. M. Tanyol, G.Ö. Erguven, V. Korkmaz, N. Yildirim, Investigation on biosorption of brilliant green dye from aqueous solutions by newly isolated fungus Aspergillus oryzae: RSM-optimized process variables and Daphnia magna bioassay, Eur. J. Sci. Technol., 35 (2022) 497–506.
  11. E. Koz, U. Cevik, Lead adsorption capacity of some moss species used for heavy metal analysis, Ecol. Indic., 36 (2014) 491–494.
  12. A.J. Jafari, A. Alahabadi, M.H. Saghi, Z. Rezai, A. Rastegar, M.S. Zamani, P. Singh, A. Hosseini-Bandegharaei, Adsorptive removal of phenol from aqueous solutions using chemically activated rice husk ash: equilibrium, kinetic, and thermodynamic studies, Desal. Water Treat., 158 (2019) 233–244.
  13. S. Sharma, Study on impact of heavy metal accumulation in Brachythecium populeum (Hedw.) B.S.G., Ecol. Indic., 9 (2009) 807–811.
  14. E. Sert, A. Uğur, B. Özden, M.M. Saç, B. Camgöz, Biomonitoring of 210Po and 210Pb using lichens and mosses around coalfired power plants in Western Turkey, J. Environ. Radioact., 102 (2011) 535–542.
  15. B. MacQueen, R. Jayarathna, J. Lauterbach, Knowledge extraction in catalysis utilizing design of experiments and machine learning, Curr. Opin. Chem. Eng., 36 (2022) 100781, doi: 10.1016/j.coche.2021.100781.
  16. M.B.S. Ali, B. Hamrouni, Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology, Membr. Water Treat., 7 (2016) 127–141.
  17. A. Nawaz, P. Kumar, Optimization of process parameters of Lagerstroemia speciosa seed hull pyrolysis using a combined approach of response surface methodology (RSM) and artificial neural network (ANN) for renewable fuel production, Bioresour. Technol. Rep., 18 (2022) 101110, doi: 10.1016/j.biteb.2022.101110.
  18. P. Raizada, J. Kumari, P. Shandilya, R. Dhiman, V.P. Singh, P. Singh, Magnetically retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin, Process Saf. Environ. Prot., 106 (2017) 104–116.
  19. M. Dolatabadi, T. Świergosz, S. Ahmadzadeh, Electro-Fenton approach in oxidative degradation of dimethyl phthalate - the treatment of aqueous leachate from landfills, Sci. Total Environ., 772 (2021) 145323, doi: 10.1016/j.scitotenv.2021.145323.
  20. N. Kattamuri, C. Sung, Uniform polycarbonate nanofibers produced by electrospinning, Macromolecules, 3 (2004) 425–428.
  21. M. Ghanbarian, A.H. Mahvi, M. Ghanbarian, Data on bioassay of toxicity reduction of treated textile wastewater by using nanophotocatalytic process by Daphnia magna, Data Brief, 21 (2018) 1321–1324.
  22. D. Kirsanov, E. Legin, A. Zagrebin, N. Ignatieva, V. Rybakin, A. Legin, Mimicking Daphnia magna bioassay performance by an electronic tongue for urban water quality control, Anal. Chim. Acta, 824 (2014) 64–70.
  23. U. Mark, J. Solbe, Analysis of the ecetoc aquatic toxicity (EAT) database V — the relevance of Daphnia magna as a representative test species, Chemosphere, 36 (1998) 155–166.
  24. R.M. Ros, V. Mazimpaka, U. Abou-Salama, M. Aleffi, T.L. Blockeel, M. Brugués, R.M. Cros, M.G. Dia, G.M. Dirkse, I. Draper, W. El-Saadawi, A. Erdağ, A. Ganeva, R. Gabriel, J.M. González-Mancebo, C. Granger, I. Herrnstadt, V. Hugonnot, K. Khalil, H. Kürschner, A. Losada-Lima, L. Luís, S. Mifsud, M. Privitera, M. Puglisi, M. Sabovljević, C. Sérgio, H.M. Shabbara, M. Sim-Sim, A. Sotiaux, R. Tacchi, A. Vanderpoorten, O. Werner, Mosses of the Mediterranean, an annotated checklist, Cryptogam. Bryol., 34 (2013) 99–283.
  25. H. Kürschner, W. Frey, Liverworts, Mosses and Hornworts of Southwest Asia (Marchantiophyta, Bryophyta, Anthocerotophyta) Second Enlarged and Revised Edition, J. Cramer in Borntraeger Science Publishers, Stutgard, Germany, 2020.
  26. A.J.E. Smith, The Moss Flora of Britain and Ireland. Cambridge University Press, London, 2004.
  27. K. Dierssen, Distribution, Ecological Amplitude and Phytosociological Characterization of European Bryophytes, Bryophyt. Bibl., 56 (2001) 289.
  28. R.H. Myers, D.C. Montgomery, Response Surface Methodology, John Wiley, New York, 2002.
  29. R. Mohammadi, M.A. Mohammadifar, A.M. Mortazavian, M. Rouhi, J.B. Ghasemi, Z. Delshadian, Extraction optimization of pepsin-soluble collagen from eggshell membrane by response surface methodology (RSM), Food Chem., 190 (2016) 186–193.
  30. S. Gholamiyan, M. Hamzehloo, A. Farrokhnia, RSM optimized adsorptive removal of erythromycin using magnetic activated carbon: adsorption isotherm, kinetic modeling and thermodynamic studies, Sustainable Chem. Pharm., 17 (2020) 100309, doi: 10.1016/j.scp.2020.100309.
  31. M.H. Dehghani, K. Yetilmezsoy, M. Salari, Z. Heidarinejad, M. Yousefi, M. Sillanpää, Adsorptive removal of cobalt(II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: modelling and optimization based on response surface methodology and artificial neural network, J. Mol. Liq., 299 (2020) 112154, doi: 10.1016/j. molliq.2019.112154.
  32. S.J. Salih, S.A.A. Kareem, S.S. Anwer, Adsorption of anionic dyes from textile wastewater utilizing raw corncob, Heliyon, 8 (2022) e10092, doi: 10.1016/j.heliyon.2022.e10092.
  33. A. Drah, N.Z. Tomić, Z. Veličić, A.D. Marinković, Ž. Radovanović, Z. Veličković, R. Jančić-Heinemann, Highly ordered macroporous γ-alumina prepared by a modified solgel method with a PMMA microsphere template for enhanced Pb2+, Ni2+ and Cd2+ removal, Ceram. Int., 43 (2017) 13817–13827.
  34. M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, A. Taitai, Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite, Arabian J. Chem., 10 (2017) S3292–S3302.
  35. W.A. Stubblefield, E.V. Genderen, A.S. Cardwell, D.G. Heijerick, C.R. Janssen, K.A.C. de Schamphelaere, Acute and chronic toxicity of cobalt to freshwater organisms: using a species sensitivity distribution approach to establish International Water Quality Standards, Environ. Toxicol. Chem., 39 (2020) 799–811.
  36. T. Edwin, T. Ihsan, W. Pratiwi, Acute toxicity test of metal lead (Pb), chromium (Cr) and cobalt (Co) on Daphnia magna, Jurnal Teknik Lingkungan UNAND, 14 (2017) 33–40.