References

  1. Organisation of Economic Co-operation and Development and Food and Agriculture Organization of the United Nations, OECD-FAO Agricultural Outlook 2012–2021, 2012. Available at https://doi.org/10.1787/agr_outlook-2012-en
  2. I.A. Saleh, N. Zouari, M.A. Al-Ghouti, Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches, Environ. Technol. Innovation, 19 (2020) 101026, doi: 10.1016/j.eti.2020.101026.
  3. I.B. Gomes, L.C. Simões, M. Simões, The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states, Sci. Total Environ., 643 (2018) 1348–1356.
  4. W.J. Zhang, Global pesticide use: profile, trend, cost/benefit and more, Proc. Int. Acad. Ecol. Environ. Sci., 8 (2018) 1–27.
  5. D. Pimentel, Amounts of pesticides reaching target pests: environmental impacts and ethics, J. Agric. Environ. Ethics, 8 (1995) 17–29.
  6. G. Lofrano, G. Libralato, S. Meric, V. Vaiano, O. Sacco, V. Venditto, M. Guida, M. Carotenuto, 1 – Occurrence and Potential Risks of Emerging Contaminants in Water, O. Sacco, V. Vaiano, Eds., Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants: Science and Engineering, Elsevier, Amsterdam, Netherlands, 2020, pp. 1–25. doi: 10.1016/B978-0-12-818334-2.00001-8
  7. A. Sharma, V. Kumar, B. Shahzad, M. Tanveer, G.P.S. Sidhu, N. Handa, S.K. Kohli, P. Yadav, A.S. Bali, R.D. Parihar, O.I. Dar, K. Singh, S. Jasrotia, P. Bakshi, M. Ramakrishnan, S. Kumar, R. Bhardwaj, A.K. Thukral, Worldwide pesticide usage and its impacts on ecosystem, SN Appl. Sci., 1 (2019) 1446, doi: 10.1007/s42452-019-1485-1.
  8. R.W. Coppock, M.M. Dziwenka, Threats to Wildlife by Chemical and Warfare Agents, R.C. Gupta, Ed., Handbook of Toxicology of Chemical Warfare Agents, Academic Press, Boston, 2020, pp. 1077–1087.
  9. R.A. Hamza, O.T. Iorhemen, J.H. Tay, Occurrence, impacts and removal of emerging substances of concern from wastewater, Environ. Technol. Innovation, 5 (2016) 161–175.
  10. A. De, R. Bose, A. Kumar, S. Mozumdar, Worldwide Pesticide Use: Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles, Springer, Berlin, 2014, pp. 5–6.
  11. L.M. He, J. Troiano, A. Wang, K. Kean Goh, Environmental Chemistry, Ecotoxicity and Fate of Lambda-Cyhalothrin. Review of Environmental Contamination and Toxicology, Vol. 195, Springer Cham Heidelberg, NY, USA, 2008.
  12. M.L. Feo, E. Eljarrat, D. Barceló, Determination of pyrethroid insecticides in environmental samples, TrAC, Trends Anal. Chem., 29 (2010) 692–705.
  13. K. Alalibo, U.A. Patricia, D.E. Ransome, Effects of lambdacyhalothrin on the behaviour and histology of gills of Sarotherodon melanotheron in brackish water, Sci. Afr., 6 (2019) e00178, doi: 10.1016/j.sciaf.2019.e00178.
  14. M. Stuart, D. Lapworth, E. Crane, A. Hart, Review of risk from potential emerging contaminants in UK groundwater, Sci. Total Environ., 416 (2012) 1–21.
  15. M. Köck-Schulmeyer, M. Villagrasa, M. López de Alda, R. Céspedes-Sánchez, F. Ventura, D. Barceló, Occurrence and behaviour of pesticides in wastewater treatment plants and their environmental impact, Sci. Total Environ., 458–460 (2013) 466–476.
  16. L. Goodwin, I. Carra, P. Campo-Moreno, A. Soares, Treatment Options for Reclaiming Wastewater Produced by the Pesticide Industry, Int. J. Water Wastewater Treat., Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, UK, 2017. doi: 10.16966/2381-5299.149
  17. N. Vela, J. Fenoll, I. Garrido, G. Pérez-Lucas, P. Flores, P. Hellín, S. Navarro, Reclamation of agro-wastewater polluted with pesticide residues using sunlight activated persulfate for agricultural reuse, Sci. Total Environ., 660 (2019) 923–930.
  18. I.A. Saleh, N. Zouari, M.A. Al-Ghouti, Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches, Environ. Technol. Innovation, 19 (2020) 101026, doi: 10.1016/j.eti.2020.101026.
  19. V.K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, Pesticides removal from wastewater by activated carbon prepared from waste rubber tire, Water Res., 45 (2011) 4047–4055.
  20. J. Rodriguez-Liebana, A. Lopez-Galindo, C. de Cisneros, A. Galves, M. Rozalen, R. Sanchez-Espejo, E. Caballero, A. Pena, Adsorption/desorption of fungicides in natural clays from southeastern Spain, Appl. Clay Sci., 132–133 (2016) 402–411.
  21. S. Salazar, D. Guerra, N. Yutronic, P. Jara, Removal of aromatic chlorinated pesticides from aqueous solution using β-cyclodextrin polymers decorated with Fe3O4 nanoparticles, Polymers (Basel), 10 (2018) 1038, doi: 10.3390/polym10091038.
  22. W. Lu, W. Chen, N. Li, M. Xu, Y. Yao, Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine, Appl. Catal., B, 87 (2009) 146–151.
  23. J. Huang, C. Yan, K. Huang, Removal of p-nitrophenol by a water-compatible hypercrosslinked resin functionalized with formaldehyde carbonyl groups and XAD-4 in aqueous solution: a comparative study, J. Colloid Interface Sci., 332 (2009) 60–64.
  24. C. Corre, C. Couriol, A. Amrane, É. Dumont, Y. Andrès, P. Le Cloirec, Efficiency of biological activator formulated material (BAFM) for volatile organic compounds removal – preliminary batch culture tests with activated sludge, Environ. Technol., 33 (2012) 1671–1676.
  25. Z. Pan, S. Yu, H. Huang, J. Lang, Y. Yang, C. Lin, Treatment of high concentration pesticide wastewater by pressurized biochemical process, Asian Pac. J. Chem. Eng., (2004) 1–8.
  26. N. Modirshahla, M. Behnajady, S. Mohammadi-Aghdam, Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation, J. Hazard. Mater., 154 (2008) 778–786.
  27. V. Héquet, C. Gonzalez, P. Le Cloirec, Photochemical processes for atrazine degradation: methodological approach, Water Res., 35 (2001) 4253–4260.
  28. A. Tomašević, S. Gasic, Photochemical Processes and Their Use in Remediation of Water Containing Pesticides, 7th Congress on Plant Protection, Plant Protection Society of Serbia, Belgrade, 2015, pp. 365–369.
  29. P. Yu, Z. Chang, Y. Ma, S. Wang, H. Cao, C. Hua, H. Liu, Separation of p-nitrophenol and o-nitrophenol with threeliquid phase extraction system, Sep. Purif. Technol., 70 (2009) 199–206.
  30. S.K. Selahle, A. Mpupa, P.N. Nomngongo, A review of extraction, analytical, and advanced methods for the determination of neonicotinoid insecticides in environmental water matrices, Rev. Anal. Chem., 40 (2021) 187–203.
  31. R.O. Costa, P.S. Barcellos, M.C. Canela, Removal of pesticide residues after conventional drinking water treatment: by-products and acetylcholinesterase inhibition, Eclética Quím. J., 43 (2018) 65–73.
  32. M. Salimi, A. Esrafili, M. Gholami, A. Jonidi Jafari, R. Rezaei Kalantary, M. Farzadkia, M. Kermani, H.R. Sobhi, Contaminants of emerging concern: a review of new approach in AOP technologies, Environ. Monit. Assess., 189 (2017) 414, doi: 10.1007/s10661-017-6097-x.
  33. R. Colombo, T.C.R. Ferreira, S.A. Alves, R.L. Carneiro, M.R.V. Lanza, Application of the response surface and desirability design to the lambda-cyhalothrin degradation using photo-Fenton reaction, J. Environ. Manage., 118 (2013) 32–39.
  34. B. Van der Bruggen, K. Everaert, D. Wilms, C. Vandecasteele, Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation, J. Membr. Sci., 193 (2001) 239–248.
  35. C. Causserand, P. Aimar, J.P. Cravendi, E. Singlande, Dichloroaniline retention by nanofiltration membranes, Water Res., 39 (2005) 1594–1600.
  36. M. Nikbakht Fini, H.T. Madsen, J. Muff, The effect of water matrix, feed concentration and recovery on the rejection of pesticides using NF/RO membranes in water treatment, Sep. Purif. Technol., 215 (2019) 521–527.
  37. A. Mukherjee, R. Mehta, S. Saha, A. Bhattacharya, P.K. Biswas, R.K. Kole, Removal of multiple pesticide residues from water by low-pressure thin-film composite membrane, Appl. Water Sci., 10 (2020) 244, doi: 10.1007/s13201-020-01315-y.
  38. A.A. Yahya, K.T. Rashid, M.Y. Ghadhban, N.E. Mousa, H.S. Majdi, I.K. Salih, Q.F. Alsalhy, Removal of 4-nitrophenol from aqueous solution by using polyphenylsulfone-based blend membranes: characterization and performance, Membranes, 11 (2021) 171, doi: 10.3390/membranes11030171.
  39. R. Mehta, H. Brahmbhatt, N.K. Saha, A. Bhattacharya, Removal of substituted phenyl urea pesticides by reverse osmosis membranes: laboratory scale study for field water application, Desalination, 358 (2015) 69–75.
  40. L.S. Tan, A.L. Ahmad, S.R.A. Shukor, S.P. Yeap, Impact of solute properties and water matrix on nanofiltration of pesticides, Chem. Eng. Technol., 42 (2019) 1780–1787.
  41. F.H. Al-Ani, Q.F. Alsalhy, M. Al-Dahhan, Enhancing emulsion liquid membrane system (ELM) stability and performance for the extraction of phenol from wastewater using various nanoparticles, Desal. Water Treat., 210 (2021) 180–191.
  42. R. Romero-González, E. Pastor-Montoro, J. Luis Martínez-Vidal, A. Garrido-Frenich, Application of hollow fiber supported liquid membrane extraction to the simultaneous determination of pesticide residues in vegetables by liquid chromatography/mass spectrometry, Rapid Commun. Mass Spectrom., 20 (2006) 2701–2708.
  43. Z. Ao, Z. Yang, J. Wang, G. Zhang, T. Ngai, Emulsion-templated liquid core-polymer shell microcapsule formation, Langmuir, 25 (2009) 2572–2574.
  44. J. Đorđević, G.T. Vladisavljević, T. Trtić-Petrović, Liquid phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fiber contactor with feed-stream recycles, Environ. Technol., 38 (2016) 78–84.
  45. H. Xia, Removal of Lambda-Cyhalothrin by Water Hyacinth (Eichornia Crassipes), 2nd International Conference on Bioinformatics and Biomedical Engineering, IEEE, Shanghai, China, 2008, pp. 3446–3450.
  46. A. Marican, E.F. Durán-Lara, A review on pesticide removal through different processes, Environ. Sci. Pollut. Res., 25 (2018) 2051–2064.
  47. R.A. Kumbasar, Selective extraction of chromium(VI) from multicomponent acidic solutions by emulsion liquid membranes using tributhylphosphate as carrier, J. Hazard. Mater., 15 (2010) 875–82.
  48. A. Dâas, O. Hamdaoui, Extraction of bisphenol A from aqueous solutions by emulsion liquid membrane, J. Membr. Sci., 348 (2010) 360–368.
  49. S. Laguel, M.H. Samar, Removal of Europium(III) from water by emulsion liquid membrane using Cyanex 302 as a carrier, Desal. Water Treat., 165 (2019) 269–280.
  50. A. Shorki, P. Daraei, S. Zereshki, Water decolorization using waste cooking oil: an optimized green emulsion liquid membrane by RSM, J. Water Process Eng., 33 (2020) 101021, doi: 10.1016/j.jwpe.2019.101021.
  51. M.A. Mohammed, W.O. Noori, H.A. Sabbar, Application of emulsion liquid membrane process for cationic dye extraction, Iraqi J. Chem. Petrol. Eng., 21 (2020) 39–44.
  52. S.H. Chang, Types of bulk liquid membrane and its membrane resistance in heavy metal removal and recovery from wastewater, Desal. Water Treat., 57 (2016) 19785–19793.
  53. A. Kargari, K. Abbassian, Study of phenol removal from aqueous solutions by a double emulsion (W/O/W) system stabilized with polymer, Sep. Purif. Technol., 50 (2015) 1083–1092.
  54. A. Kargari, T. Kaghazchi, B. Mardangahi, M. Soleimani, Experimental and modeling of selective separation of gold(III) ions from aqueous solutions by emulsion liquid membrane system, J. Membr. Sci., 279 (2006) 389–393.
  55. H.M. Salman, A.A. Mohammed, Removal of copper ions from aqueous solution using liquid-surfactant membrane technique, Iraqi J. Chem. Petrol. Eng., 20 (2019) 31–37.
  56. N. Rathore, A.M. Sastre, A.K. Pabby, Membrane assisted liquid extraction of actinides and remediation of nuclear waste: a review, J. Membr. Sci. Res., 2 (2016) 2–13.
  57. S. Fathi, M. Yaftian, A. Kargari, Water-in-oil emulsion liquid membrane transport of L-cysteine, Sep. Sci. Technol., 48 (2013) 105–112.
  58. S. Suahadah, K. Kamarudin, S. Najib, N. Dolmat, Carbon dioxide removal in emulsion liquid membrane containing 2-amino-2-methyl-1-propanol/monoethanolamine, J. Teknol., 75 (2015) 61–65.
  59. C.D.S. Tomlin, A World Compendium: The Pesticide Manual, 11th ed., British Crop Protection Council, Farnham, Surrey, UK, 1997, pp. 300–302.
  60. K.A. Lewis, J. Tzilivakis, D. Warner, A. Green, An international database for pesticide risk assessments and management, Hum. Ecol. Risk Assess.: Int. J., 22 (2016) 1050–1064.
  61. C. Wang, B. Cui, L. Guo, A. Wang, X. Zhao, Y. Wang, C. Sun, Z. Zeng, H. Zhi, H. Chen, G. Liu, H. Cui, Fabrication and evaluation of lambda-cyhalothrin nanosuspension by onestep melt emulsification technique, J. Nanomater., 9 (2019) 145, doi: 10.3390/nano9020145.
  62. A.A. Mohammed, H.M. Selman, G. Abukhanafer, Liquid surfactant membrane for lead separation from aqueous solution: studies on emulsion stability and extraction efficiency, J. Environ. Chem. Eng., 6 (2018) 6923–6930.
  63. A. Dâas, O. Hamdaoui, Extraction of anionic dye from aqueous solutions by emulsion liquid membrane, J. Hazard. Mater., 178 (2010) 973–981.
  64. A.A. Mohammed, M.A. Atiya, M.A. Hussein, Removal of antibiotic tetracycline using nano-fluid emulsion liquid membrane: breakage, extraction and stripping studies, Colloids Surf., A, 595 (2020) 124680, doi: 10.1016/j.colsurfa.2020.124680.
  65. A.A. Mohammed, R.W. Al-Khateeb, Application of emulsion liquid membrane using green surfactant for removing phenol from aqueous solution: extraction, stability and breakage studies, J. Ecol. Eng., 23 (2022) 305–314.
  66. H.M. Salman, A.A. Mohammed, Extraction of lead ions from aqueous solution by co-stabilization mechanisms of magnetic Fe2O3 particles and nonionic surfactants in emulsion liquid membrane, Colloids Surf., A, 568 (2019) 301–310.
  67. S. Laki, A. Kargari, Extraction of silver ions from aqueous solutions by emulsion liquid membrane, J. Membr. Sci. Res., 2 (2016) 33–40.
  68. S. Chaouchi, O. Hamdaoui, Extraction of endocrine disrupting compound propylparaben from water by emulsion liquid membrane using trioctylphosphine oxide as carrier, J. Ind. Eng. Chem., 22 (2015) 296–305.
  69. M. Samar, D. Pareau, A. Chesne, G. Durand, Membrane liquide échangeuse de cations: application à l’extraction du nickel, Bulletin de la Société chimique de France, 129 (1992) 259–264.
  70. K. Anarakdim, G. Gutiérrez, Á. Cambiella, O. Senhadji- Kebiche, M. Matos, The effect of emulsifiers on the emulsion stability and extraction efficiency of Cr(VI) using emulsion liquid membranes (ELMs) formulated with a green solvent, Membranes, 10 (2020) 76, doi: 10.3390/membranes10040076.
  71. P. Davoodi-Nasab, A. Rahbar-Kelishami, J. Safdari, H. Abolghasemi, Evaluation of the emulsion liquid membrane performance on the removal of gadolinium from acidic solutions, J. Mol. Liq., 262 (2018) 97–103.
  72. P. Venkateswaran, Di(2-ethylhexyl) phosphoric acid-coconut oil supported liquid membrane for the separation of copper ions from copper plating wastewater, J. Environ. Sci., 19 (2007) 1446–1453.
  73. A.A. Mohammed, M.A. Atiya, M.A. Hussein, Studies on membrane stability and extraction of ciprofloxacin from aqueous solution using pickering emulsion liquid membrane stabilized by magnetic nano-Fe2O3, Colloids Surf., A, 585 (2020) 124044, doi: 10.1016/j.colsurfa.2019.124044.
  74. R. Sabry, A. Hafez, M. Khedr, A. El-Hassanin, Removal of lead by an emulsion liquid membrane: Part I, Desalination, 212 (2007) 165–175.
  75. A.A. Mohammed, M.A. Atiya, M.A. Hussein, Simultaneous studies of emulsion stability and extraction capacity for the removal of tetracycline from aqueous solution by liquid surfactant membrane, Chem. Eng. Res. Des., 159 (2020) 225–235.
  76. M. Djenouhat, O. Hamdaoui, M. Chiha, M.H. Samar, Ultra sonication-assisted preparation of water-in-oil emulsions and application to the removal of cationic dyes from water by emulsion liquid membrane Part 2. Permeation and stripping, Sep. Purif. Technol., 63 (2008) 231–238.
  77. S. Zereshki, P. Daraei, A. Shokri, Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane, J. Hazard. Mater., 356 (2018) 1–8.
  78. A.A. Mohammed, Removal of emulsified paraffine from water: effect of bubble size and particle size on kinetic of flotation, Iraqi J. Chem. Eng., 8 (2007) 1–5.
  79. A. Kumar, A. Thakur, P.S. Panesar, A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams, Rev. Environ. Sci. Biotechnol., 18 (2019) 153–182.
  80. N.F.M. Naoh, N. Othman, N. Jusoh, Highly selective transport of palladium from electroplating wastewater using emulsion liquid membrane process, J. Taiwan Inst. Chem. Eng., 64 (2016) 134–141.
  81. P.S. Kulkarni, V.V. Mahajani, Application of liquid emulsion membrane (LEM) process for enrichment of molybdenum from aqueous solutions, J. Membr. Sci., 201 (2002) 123–135.
  82. M. Raji, H. Abolghasemi, J. Safdari, A. Kargari, Response surface optimization of dysprosium extraction using an emulsion liquid membrane integrated with multi-walled carbon nanotubes, Chem. Eng. Technol., 41 (2018) 1857–1870.
  83. H.P. Kohli, S. Gupta, M. Chakraborty, Stability and performance study of emulsion nanofluid membrane: a combined approach of adsorption and extraction of ethylparaben, Colloids Surf., A, 579 (2019) 123675, doi: 10.1016/j.colsurfa.2019.123675.
  84. H. Kasaini, F. Nakashio, M. Goto, Application of emulsion liquid membranes to recover cobalt ions from a dual-component sulphate solution containing nickel ions, J. Membr. Sci., 146 (1998) 159–168.
  85. R.E. Treybal, Mass – Transfer Operations, 3rd ed., McGraw-Hill Book Co., Singapore, 1981.
  86. B.E. Poling, J.M. Prausnitz, J.P. O’connell, The Properties of Gases and Liquids, McGraw-Hill, New York, 2001.
  87. V. Karcher, F. Perrechil, A. Bannwart, Interfacial energy during the emulsification of water-in-heavy crude oil emulsions, Braz. J. Chem. Eng., 32 (2015) 127–137.