References
- A. Panagopoulos, V. Giannika, Comparative techno-economic
and environmental analysis of minimal liquid discharge
(MLD) and zero liquid discharge (ZLD) desalination systems
for seawater brine treatment and valorization, Sustainable
Energy Technol. Assess., 53 (2022) 102477, doi: 10.1016/j.seta.2022.102477.
- A. Panagopoulos, Brine management (saline water and wastewater
effluents): sustainable utilization and resource recovery
strategy through minimal and zero liquid discharge (MLD
and ZLD) desalination systems, Chem. Eng. Process. Process
Intensif., 176 (2022) 108944, doi: 10.1016/j.cep.2022.108944.
- A. Panagopoulos, Techno-economic assessment and
feasibility study of a zero liquid discharge (ZLD) desalination
hybrid system in the Eastern Mediterranean, Chem. Eng.
Process. Process Intensif., 178 (2022) 109029, doi: 10.1016/j.cep.2022.109029.
- S.M. Ho, Low-cost adsorbents for the removal of phenol/phenolics, pesticides, and dyes from wastewater systems: a
review, Water, 14 (2022) 3203, doi: 10.3390/w14203203.
- M.N. Abbas, A.-S.T. Al-Madhhachi, S.A. Esmael, Quantifying
soil erodibility parameters due to wastewater chemicals,
Int. J. Hydrol. Sci. Technol., 9 (2019) 550–568.
- H.T. Hamad, Removal of phenol and inorganic metals from
wastewater using activated ceramic, J. King Saud Univ. Eng.
Sci., 33 (2021) 221–226.
- V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal,
Chromium removal from water by activated carbon
developed from waste rubber tires, Environ. Sci. Pollut. Res.,
20 (2013) 1261–1268.
- S.M. Anisuzzaman, A. Bono, D. Krishnaiah, Y.Z. Tan, A study
on dynamic simulation of phenol adsorption in activated
carbon packed bed column, J. King Saud Univ. Eng. Sci.,
28 (2016) 47–55.
- M. Malakootian, H.J. Mansoorian, M. Alizadeh, A. Baghbanian,
Phenol removal from aqueous solution by adsorption process:
study of the nanoparticles performance prepared from Aloe
vera and Mesquite (Prosopis) leaves, Sci. Iran. C, 24 (2017)
3041–3052.
- M.F. Abid, O.N. Abdulla, A.F. Kadhim, Study on removal of
phenol from synthetic wastewater using solar photocatalytic
reactor, J. King Saud Univ. Eng. Sci., 31 (2019) 131–139.
- F. Kafshgari, A.R. Keshtkar, M.A. Mousavian, Study of
Mo(VI) removal from aqueous solution: application of
different mathematical models to continuous biosorption
data, Iran. J. Environ. Health Sci. Eng., 10 (2013) 14,
doi: 10.1186/1735-2746-10-14.
- N. Miralles, C. Valderrama, I. Casas, M. Martínez, A. Florido,
Cadmium and lead removal from aqueous solution by grape
stalk wastes: modeling of a fixed-bed column, J. Chem. Eng.
Data, 55 (2010) 3548–3554.
- G. Vázquez, R. Alonso, S. Freire, J. González-Álvarez,
G. Antorrena, Uptake of phenol from aqueous solutions by
adsorption in a Pinus pinaster bark packed bed, J. Hazard.
Mater., 133 (2006) 61–67.
- L.F. Bautista, M. Martínez, J. Aracil, Adsorption of α-amylase
in a fixed bed: operating efficiency and kinetic modeling,
AlChE J., 49 (2003) 2631–2641.
- C.-C. Chen, K.F. Hayes, X-ray absorption spectroscopy
investigation of aqueous Co(II) and Sr(II) sorption at clay–
water interfaces, Geochim. Cosmochim. Acta, 63 (1999)
3205–3215.
- H. Patel, Fixed-bed column adsorption study: a comprehensive
review, Appl. Water Sci., 9 (2019) 45, doi: 10.1007/s13201-019-0927-7.
- L. Rafati, M.H. Ehrampoush, A.A. Rafati, M. Mokhtari,
A.H. Mahvi, Fixed bed adsorption column studies and models
for removal of ibuprofen from aqueous solution by strong
adsorbent nano-clay composite, J. Environ. Health Sci. Eng.,
17 (2019) 753–765.
- I. Ali, Microwave assisted economic synthesis of multi walled
carbon nanotubes for arsenic species removal in water: batch
and column operations, J. Mol. Liq., 271 (2018) 677–685.
- L. Hao, Q. Liu, X. Li, Z. Du, P. Wang, A potentially low-cost
modified sawdust (MSD) effective for rapid Cr(VI) and As(V)
removal from water, RSC Adv., 91 (2014) 49569–49576.
- J. López-Cervantes, D.I. Sánchez-Machado, R.G. Sánchez-Duarte, M.A. Correa-Murrieta, Study of a fixed-bed column in
the adsorption of an azo dye from an aqueous medium using
a chitosan–glutaraldehyde biosorbent, Adsorpt. Sci. Technol.,
36 (2018) 215–232.
- S.V.G. Rajan, H.G.G. Rao, Studies of Soils of India, Vikas
Publishing House Pvt., Ltd., New Delhi, 1987.
- Indian Standard Methods of Chemical Analysis of Fireclay
and Refractory Materials, IS: 1527, 1960.
- S.D. Faust, O.M. Aly, Adsorption Process for Water Treatment,
Butterworths Publishers, Stoneham, 1987.
- B. Volesky, I. Prasetyo, Cadmium removal in a biosorption
column, Biotechnol. Bioeng., 43 (1994) 1010–1015.
- T. Mpouras, A. Polydera, D. Dermatas, N. Verdone, G. Vilardi,
Multi wall carbon nanotubes application for treatment of
Cr(VI)-contaminated groundwater; modeling of batch and
column experiments, Chemosphere, 269 (2021) 128749,
doi: 10.1016/j.chemosphere.2020.128749.
- J. Zhao, L. Yu, H. Ma, F. Zhou, K. Yang, G. Wu, Corn stalk-based
activated carbon synthesized by a novel activation method
for high-performance adsorption of hexavalent chromium
in aqueous solutions, J. Colloid Interface Sci., 578 (2020)
650–659.
- A. Mandal, S.K. Das, Adsorptive removal of phenol by
activated alumina and activated carbon from coconut coir and
rice husk ash, Water Conserv. Sci. Eng., 4 (2019) 149–161.
- J. Cruz-Olivares, C. Pérez-Alonso, C. Barrera-Díaz, F. Ureña-Nuñez, M.C. Chaparro-Mercado, B. Bilyeu, Modeling of
lead(II) biosorption by residue of allspice in a fixed-bed column,
Chem. Eng. J., 228 (2013) 21–27.
- M.R. Samarghandi, M. Hadi, G. McKay, Breakthrough curve
analysis for fixed-bed adsorption of azo dyes using novel
pine cone—derived active carbon, Adsorpt. Sci. Technol.,
32 (2014) 791–806.
- S.B. Daffalla, H. Mukhtar, M.S. Shaharun, A.A. Hassaballa,
Fixed-bed adsorption of phenol onto microporous activated
carbon set from rice husk using chemical activation,
Appl. Sci., 12 (2022) 4354, doi: 10.3390/app12094354.
- S. Sarkar, S.K. Das, Removal of hexavalent chromium from
aqueous solution using natural adsorbents - column studies,
Int. J. Eng. Res. Technol. (IJERT), 5 (2016) 370–377.
- S.S. Madan, B.S. De, K.L. Wasewar, Adsorption performance
of packed bed column for benzylformic acid removal using
CaO2 nanoparticles, Chem. Data Collect., 23 (2019) 100267,
doi: 10.1016/j.cdc.2019.100267.
- M. LaGrega, P. Buckingham, J. Evans, The Environmental
Resources Management Group, Hazardous Waste Management,
McGraw-Hill Inc., New York, NY, 1994.
- R.A. Dobbs, J.M. Carbon, Adsorption Isotherms for Toxic
Organics, Municipal Environmental Research Laboratory,
Office of Research and Development, USEPA, Cincinnati,
Ohio, 1980.
- Metcalf and Eddy, Wastewater Engineering Treatment and
Reuse, TATA McGraw-Hill, 2005.
- W.J. Wujcik, W.L. Lowe, P.J. Marks, W.E. Sisk, Granular
activated carbon pilot treatment studies for explosives removal
from contaminated groundwater, Environ. Prog., 11 (1992)
178–189.