References

  1. A. Panagopoulos, V. Giannika, Comparative techno-economic and environmental analysis of minimal liquid discharge (MLD) and zero liquid discharge (ZLD) desalination systems for seawater brine treatment and valorization, Sustainable Energy Technol. Assess., 53 (2022) 102477, doi: 10.1016/j.seta.2022.102477.
  2. A. Panagopoulos, Brine management (saline water and wastewater effluents): sustainable utilization and resource recovery strategy through minimal and zero liquid discharge (MLD and ZLD) desalination systems, Chem. Eng. Process. Process Intensif., 176 (2022) 108944, doi: 10.1016/j.cep.2022.108944.
  3. A. Panagopoulos, Techno-economic assessment and feasibility study of a zero liquid discharge (ZLD) desalination hybrid system in the Eastern Mediterranean, Chem. Eng. Process. Process Intensif., 178 (2022) 109029, doi: 10.1016/j.cep.2022.109029.
  4. S.M. Ho, Low-cost adsorbents for the removal of phenol/phenolics, pesticides, and dyes from wastewater systems: a review, Water, 14 (2022) 3203, doi: 10.3390/w14203203.
  5. M.N. Abbas, A.-S.T. Al-Madhhachi, S.A. Esmael, Quantifying soil erodibility parameters due to wastewater chemicals, Int. J. Hydrol. Sci. Technol., 9 (2019) 550–568.
  6. H.T. Hamad, Removal of phenol and inorganic metals from wastewater using activated ceramic, J. King Saud Univ. Eng. Sci., 33 (2021) 221–226.
  7. V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal, Chromium removal from water by activated carbon developed from waste rubber tires, Environ. Sci. Pollut. Res., 20 (2013) 1261–1268.
  8. S.M. Anisuzzaman, A. Bono, D. Krishnaiah, Y.Z. Tan, A study on dynamic simulation of phenol adsorption in activated carbon packed bed column, J. King Saud Univ. Eng. Sci., 28 (2016) 47–55.
  9. M. Malakootian, H.J. Mansoorian, M. Alizadeh, A. Baghbanian, Phenol removal from aqueous solution by adsorption process: study of the nanoparticles performance prepared from Aloe vera and Mesquite (Prosopis) leaves, Sci. Iran. C, 24 (2017) 3041–3052.
  10. M.F. Abid, O.N. Abdulla, A.F. Kadhim, Study on removal of phenol from synthetic wastewater using solar photocatalytic reactor, J. King Saud Univ. Eng. Sci., 31 (2019) 131–139.
  11. F. Kafshgari, A.R. Keshtkar, M.A. Mousavian, Study of Mo(VI) removal from aqueous solution: application of different mathematical models to continuous biosorption data, Iran. J. Environ. Health Sci. Eng., 10 (2013) 14, doi: 10.1186/1735-2746-10-14.
  12. N. Miralles, C. Valderrama, I. Casas, M. Martínez, A. Florido, Cadmium and lead removal from aqueous solution by grape stalk wastes: modeling of a fixed-bed column, J. Chem. Eng. Data, 55 (2010) 3548–3554.
  13. G. Vázquez, R. Alonso, S. Freire, J. González-Álvarez, G. Antorrena, Uptake of phenol from aqueous solutions by adsorption in a Pinus pinaster bark packed bed, J. Hazard. Mater., 133 (2006) 61–67.
  14. L.F. Bautista, M. Martínez, J. Aracil, Adsorption of α-amylase in a fixed bed: operating efficiency and kinetic modeling, AlChE J., 49 (2003) 2631–2641.
  15. C.-C. Chen, K.F. Hayes, X-ray absorption spectroscopy investigation of aqueous Co(II) and Sr(II) sorption at clay– water interfaces, Geochim. Cosmochim. Acta, 63 (1999) 3205–3215.
  16. H. Patel, Fixed-bed column adsorption study: a comprehensive review, Appl. Water Sci., 9 (2019) 45, doi: 10.1007/s13201-019-0927-7.
  17. L. Rafati, M.H. Ehrampoush, A.A. Rafati, M. Mokhtari, A.H. Mahvi, Fixed bed adsorption column studies and models for removal of ibuprofen from aqueous solution by strong adsorbent nano-clay composite, J. Environ. Health Sci. Eng., 17 (2019) 753–765.
  18. I. Ali, Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations, J. Mol. Liq., 271 (2018) 677–685.
  19. L. Hao, Q. Liu, X. Li, Z. Du, P. Wang, A potentially low-cost modified sawdust (MSD) effective for rapid Cr(VI) and As(V) removal from water, RSC Adv., 91 (2014) 49569–49576.
  20. J. López-Cervantes, D.I. Sánchez-Machado, R.G. Sánchez-Duarte, M.A. Correa-Murrieta, Study of a fixed-bed column in the adsorption of an azo dye from an aqueous medium using a chitosan–glutaraldehyde biosorbent, Adsorpt. Sci. Technol., 36 (2018) 215–232.
  21. S.V.G. Rajan, H.G.G. Rao, Studies of Soils of India, Vikas Publishing House Pvt., Ltd., New Delhi, 1987.
  22. Indian Standard Methods of Chemical Analysis of Fireclay and Refractory Materials, IS: 1527, 1960.
  23. S.D. Faust, O.M. Aly, Adsorption Process for Water Treatment, Butterworths Publishers, Stoneham, 1987.
  24. B. Volesky, I. Prasetyo, Cadmium removal in a biosorption column, Biotechnol. Bioeng., 43 (1994) 1010–1015.
  25. T. Mpouras, A. Polydera, D. Dermatas, N. Verdone, G. Vilardi, Multi wall carbon nanotubes application for treatment of Cr(VI)-contaminated groundwater; modeling of batch and column experiments, Chemosphere, 269 (2021) 128749, doi: 10.1016/j.chemosphere.2020.128749.
  26. J. Zhao, L. Yu, H. Ma, F. Zhou, K. Yang, G. Wu, Corn stalk-based activated carbon synthesized by a novel activation method for high-performance adsorption of hexavalent chromium in aqueous solutions, J. Colloid Interface Sci., 578 (2020) 650–659.
  27. A. Mandal, S.K. Das, Adsorptive removal of phenol by activated alumina and activated carbon from coconut coir and rice husk ash, Water Conserv. Sci. Eng., 4 (2019) 149–161.
  28. J. Cruz-Olivares, C. Pérez-Alonso, C. Barrera-Díaz, F. Ureña-Nuñez, M.C. Chaparro-Mercado, B. Bilyeu, Modeling of lead(II) biosorption by residue of allspice in a fixed-bed column, Chem. Eng. J., 228 (2013) 21–27.
  29. M.R. Samarghandi, M. Hadi, G. McKay, Breakthrough curve analysis for fixed-bed adsorption of azo dyes using novel pine cone—derived active carbon, Adsorpt. Sci. Technol., 32 (2014) 791–806.
  30. S.B. Daffalla, H. Mukhtar, M.S. Shaharun, A.A. Hassaballa, Fixed-bed adsorption of phenol onto microporous activated carbon set from rice husk using chemical activation, Appl. Sci., 12 (2022) 4354, doi: 10.3390/app12094354.
  31. S. Sarkar, S.K. Das, Removal of hexavalent chromium from aqueous solution using natural adsorbents - column studies, Int. J. Eng. Res. Technol. (IJERT), 5 (2016) 370–377.
  32. S.S. Madan, B.S. De, K.L. Wasewar, Adsorption performance of packed bed column for benzylformic acid removal using CaO2 nanoparticles, Chem. Data Collect., 23 (2019) 100267, doi: 10.1016/j.cdc.2019.100267.
  33. M. LaGrega, P. Buckingham, J. Evans, The Environmental Resources Management Group, Hazardous Waste Management, McGraw-Hill Inc., New York, NY, 1994.
  34. R.A. Dobbs, J.M. Carbon, Adsorption Isotherms for Toxic Organics, Municipal Environmental Research Laboratory, Office of Research and Development, USEPA, Cincinnati, Ohio, 1980.
  35. Metcalf and Eddy, Wastewater Engineering Treatment and Reuse, TATA McGraw-Hill, 2005.
  36. W.J. Wujcik, W.L. Lowe, P.J. Marks, W.E. Sisk, Granular activated carbon pilot treatment studies for explosives removal from contaminated groundwater, Environ. Prog., 11 (1992) 178–189.