References

  1. L.S. Kong, G.D. Fang, Y.F. Chen, M. Xie, F. Zhu, L. Ma, D.M. Zhou, J.H. Zhan, Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: kinetics, performance and mechanism studies, Appl. Catal., B, 253 (2019) 278–285.
  2. T. Zhang, X.S. Wu, S.M. Shaheen, Q. Zhao, X.J. Liu, J. Rinklebe, H.Q. Ren, Ammonium nitrogen recovery from digestate by hydrothermal pretreatment followed by activated hydrochar sorption, Chem. Eng. J., 379 (2020) 122254, doi: 10.1016/j.cej.2019.122254.
  3. G.Q. Zhou, Z.W. Chen, F. Fang, Y.F. He, H.L. Sun, H.X. Shi, Fenton-like degradation of Methylene Blue using paper mill sludge-derived magnetically separable heterogeneous catalyst: characterization and mechanism, J. Environ. Sci. (China), 35 (2015) 20–26.
  4. L. Wang, D.W. Bahnemann, L. Bian, G.H. Dong, J. Zhao, C.Y. Wang, Two-dimensional layered zinc silicate nanosheets with excellent photocatalytic performance for organic pollutant degradation and CO2 conversion, Angew. Chem. Int. Ed., 58 (2019) 8103–8108.
  5. Q.H. Ye, C.Y. Liang, X.W. Chen, T.T. Fang, Y. Wang, H. Wang, Molecular characterization of methanogenic microbial communities for degrading various types of polycyclic aromatic hydrocarbon, J. Environ. Sci. (China), 86 (2019) 97–106.
  6. S. Guo, Z.X. Yang, Z.P. Wen, H. Fida, G.K. Zhang, J.Y. Chen, Reutilization of iron sludge as heterogeneous Fenton catalyst for the degradation of Rhodamine B: role of sulfur and mesoporous structure, J. Colloid Interface Sci., 532 (2018) 441–448.
  7. G. Ayoub, A. Ghauch, Assessment of bimetallic and trimetallic iron-based systems for persulfate activation: application to sulfamethoxazole degradation, Chem. Eng. J., 256 (2014) 280–292.
  8. P. Devi, U. Das, A.K. Dalai, In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems, Sci. Total Environ., 571 (2016) 643–657.
  9. D.N. Zhou, H. Zhang, L. Chen, Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies?, J. Chem. Technol. Biotechnol., 90 (2015) 775–779.
  10. Y.Y. Fu, S.N. Li, Y.F. Shi, J.J. Geng, J.C. Li, G. Wu, K. Xu, H.Q. Ren, Removal of artificial sweeteners using UV/persulfate: radical-based degradation kinetic model in wastewater, pathways and toxicity, Water Res., 167 (2019) 115102, doi: 10.1016/j.watres.2019.115102.
  11. M.B. Gu, Q. Sui, U. Farooq, X. Zhang, Z.F. Qiu, S.G. Lyu, Degradation of phenanthrene in sulfate radical based oxidative environment by nZVI-PDA functionalized rGO catalyst, Chem. Eng. J., 354 (2018) 541–552.
  12. Y.X. Zhang, H.L. Liu, Y.J. Xin, Y.P. Shen, J. Wang, C. Cai, M.M. Wang, Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation, Chem. Eng. J., 358 (2019) 1446–1453.
  13. E.A. Serna-Galvis, F. Ferraro, J. Silva-Agredo, R.A. Torres-Palma, Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes, Water Res., 122 (2017) 128–138.
  14. P.H. Shi, R.J. Su, F.Z. Wan, M.C. Zhu, D.X. Li, S.H. Xu, Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals, Appl. Catal., B, 123–124 (2012) 265–272.
  15. J. Zou, J. Ma, L.W. Chen, X.C. Li, Y.H. Guan, P.C. Xie, C. Pan, Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine, Environ. Sci. Technol., 47 (2013) 11685–11691.
  16. H.R. Dong, Q. Ning, L. Li, Y.Y. Wang, B. Wang, L.H. Zhang, R. Tian, R. Li, J. Chen, Q.Q. Xie, A comparative study on the activation of persulfate by bare and surface-stabilized nanoscale zero-valent iron for the removal of sulfamethazine, Sep. Purif. Technol., 230 (2020) 115869, doi: 10.1016/j.seppur.2019.115869.
  17. L.W. Matzek, K.E. Carter, Activated persulfate for organic chemical degradation: a review, Chemosphere, 151 (2016) 178–188.
  18. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J., 320 (2017) 608–633.
  19. D. O’Connor, T.Y. Peng, J.L. Zhang, D.C.W. Tsang, D.S. Alessi, Z.T. Shen, N.S. Bolan, D.Y. Hou, Biochar application for the remediation of heavy metal polluted land: a review of in-situ field trials, Sci. Total Environ., 619–620 (2018) 815–826.
  20. X.F. Tan, Y.G. Liu, G.M. Zeng, X. Wang, X.J. Hu, Y.L. Gu, Z.Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125 (2015) 70–85.
  21. Y.J. Xiang, Z.Y. Xu, Y.Y. Zhou, Y.Y. Wei, X.Y. Long, Y.Z. He, D. Zhi, J. Yang, L. Luo, A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium, Chemosphere, 237 (2019) 124464, doi: 10.1016/j.chemosphere.2019.124464.
  22. F. Yang, S.S. Zhang, Y.Q. Sun, K. Cheng, J.S. Li, D.C.W. Tsang, Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal, Bioresour. Technol., 265 (2018) 490–497.
  23. S.-Y. Oh, S.-G. Kang, D.-W. Kim, P.C. Chiu, Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides, Chem. Eng. J., 172 (2011) 641–646.
  24. I. Hussain, Y.Q. Zhang, S.B. Huang, X.Z. Du, Degradation of p-chloroaniline by persulfate activated with zero-valent iron, Chem. Eng. J., 203 (2012) 269–276.
  25. T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, G.V. Lowry, Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environ. Sci. Technol., 41 (2007) 284–290.
  26. Y. Dai, Y.C. Hu, B.J. Jiang, J.L. Zou, G.H. Tian, H.G. Fu, Carbothermal synthesis of ordered mesoporous carbonsupported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction, J. Hazard. Mater., 309 (2016) 249–258.
  27. S.S. Li, F. Yang, J.S. Li, K. Cheng, Porous biochar-nanoscale zero-valent iron composites: synthesis, characterization and application for lead ion removal, Sci. Total Environ., 746 (2020) 141037, doi: 10.1016/j.scitotenv.2020.141037.
  28. H.W. Luo, Y.F. Zeng, D.Q. He, X.L. Pan, Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: a review, Chem. Eng. J., 407 (2021) 127191, doi: 10.1016/j.cej.2020.127191.
  29. S.Y. Yang, X. Yang, X.T. Shao, R. Niu, L.L. Wang, Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature, J. Hazard. Mater., 186 (2011) 659–666.
  30. S. Mandal, S.Y. Pu, L.X. Shangguan, S.B. Liu, H. Ma, S. Adhikari, D.Y. Hou, Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: a mechanistic investigation, Environ. Int., 135 (2020) 105374, doi: 10.1016/j.envint.2019.105374.
  31. F. Ghanbari, M. Riahi, B. Kakavandi, X.T. Hong, K.-Y. Andrew Lin, Intensified peroxydisulfate/microparticles-zero valent iron process through aeration for degradation of organic pollutants: kinetic studies, mechanism and effect of anions, J. Water Process Eng., 36 (2020) 101321, doi: 10.1016/j.jwpe.2020.101321.
  32. W.T. Tan, Y. Ruan, Z.H. Diao, G. Song, M.H. Su, L.A. Hou, D.Y. Chen, L.J. Kong, H.M. Deng, Removal of levofloxacin through adsorption and peroxymonosulfate activation using carbothermal reduction synthesized nZVI/carbon fiber, Chemosphere, 280 (2021) 130629, doi: 10.1016/j.chemosphere.2021.130626.
  33. Y.X. Pang, Y. Ruan, Y. Feng, Z.H. Diao, K. Shih, L.A. Hou, D.Y. Chen, L.J. Kong, Ultrasound assisted zero valent iron corrosion for peroxymonosulfate activation for Rhodamine B degradation, Chemosphere, 228 (2019) 412–417.
  34. P. Cheng, T. Li, H. Yu, L. Zhi, Z.H. Liu, Z.B. Lei, Biomassderived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors, J. Phys. Chem. C, 120 (2016) 2079–2086.
  35. P. Zhang, X.F. Tan, S.B. Liu, Y.G. Liu, G.G. Zeng, S.J. Ye, Z.H. Yin, X.J. Hu, N. Liu, Catalytic degradation of estrogen by persulfate activated with iron-doped graphitic biochar: process variables effects and matrix effects, Chem. Eng. J., 378 (2019) 122141, doi: 10.1016/j.cej.2019.122141.
  36. I. Hussain, M.Y. Li, Y.Q. Zhang, Y.C. Li, S.B. Huang, X.D. Du, G.Q. Liu, W. Hayat, N. Anwar, Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol, Chem. Eng. J., 311 (2017) 163–172.
  37. S.F. Li, T.T. You, Y. Guo, S.H. Yao, S.Y. Zang, M. Xiao, Z.G. Zhang, Y.M. Shen, High dispersions of nano zero valent iron supported on biochar by one-step carbothermal synthesis and its application in chromate removal, RSC Adv., 9 (2019) 12428–12435.
  38. J.J. Chen, J.X. Zhu, Z.L. Da, H. Xu, J. Yan, H.Y. Ji, H.M. Shu, H.M. Li, Improving the photocatalytic activity and stability of graphene-like BN/AgBr composites, Appl. Surf. Sci., 313 (2014) 1–9.
  39. J.C. Yan, L. Han, W.G. Gao, S. Xue, M.F. Chen, Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene, Bioresour. Technol., 175 (2015) 269–274.
  40. A. Hassani, J. Scaria, F. Ghanbari, P.V. Nidheesh, Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: a review on relevant activation mechanisms, performance, and perspectives, Environ. Res., 217 (2023) 114789, doi: 10.1016/j.envres.2022.114789.
  41. H. Liu, P. Sun, M.B. Feng, H.X. Liu, S.G. Yang, L.S. Wang, Z.Y. Wang, Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals, Appl. Catal., B, 187 (2016) 1–10.
  42. M.T. Zheng, Y.L. Liu, Y. Xiao, Y. Zhu, Q. Guan, D.S. Yuan, J.X. Zhang, An easy catalyst-free hydrothermal method to prepare monodisperse carbon microspheres on a large scale, J. Phys. Chem. C, 113 (2009) 8455–8459.
  43. L.B. Qian, W.Y. Zhang, J.C. Yan, L. Han, Y. Chen, D. Ouyang, M.F. Chen, Nanoscale zero-valent iron supported by biochars produced at different temperatures: synthesis mechanism and effect on Cr(VI) removal, Environ. Pollut., 223 (2017) 153–160.
  44. N. Yousefi, S. Pourfadakari, S. Esmaeili, A.A. Babaei, Mineralization of high saline petrochemical wastewater using sonoelectro-activated persulfate: degradation mechanisms and reaction kinetics, Microchem. J., 147 (2019) 1075–1082.
  45. J.-H. Chu, J.-K. Kang, S.-J. Park, C.-G. Lee, Application of magnetic biochar derived from food waste in heterogeneous sono-Fenton-like process for removal of organic dyes from aqueous solution, J. Water Process Eng., 37 (2020) 101455, doi: 10.1016/j.jwpe.2020.101455.
  46. Y.X. Xie, X.Q. Wang, W.H. Tong, W.R. Hu, P.Y. Li, L.L. Dai, Y.B. Wang, Y.K. Zhang, FexP/biochar composites induced oxygen-driven Fenton-like reaction for sulfamethoxazole removal: performance and reaction mechanism, Chem. Eng. J., 396 (2020) 125321, doi: 10.1016/j.cej.2020.125321.
  47. K.K. Rubeena, P. Hari Prasad Reddy, A.R. Laiju, P.V. Nidheesh, Iron impregnated biochars as heterogeneous Fenton catalyst for the degradation of acid red 1 dye, J. Environ. Manage., 226 (2018) 320–328.
  48. G.F. Liu, Y.Y. Zhang, H.L. Yu, R.F. Jin, J.T. Zhou, Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar, J. Hazard. Mater., 397 (2020) 122783, doi: 10.1016/j.jhazmat.2020.122783.
  49. G. Barzegar, S. Jorfi, V. Zarezade, M. Khatebasreh, F. Mehdipour, F. Ghanbari, 4-Chlorophenol degradation using ultrasound/ peroxymonosulfate/nanoscale zero valent iron: reusability, identification of degradation intermediates and potential application for real wastewater, Chemosphere, 201 (2018) 370–379.
  50. C.L. Jiang, Y.F. Ji, Y.Y. Shi, J.F. Chen, T.M. Cai, Sulfate radicalbased oxidation of fluoroquinolone antibiotics: kinetics, mechanisms and effects of natural water matrices, Water Res., 106 (2016) 507–517.
  51. K.E. Manz, T.J. Adams, K.E. Carter, Furfural degradation through heat-activated persulfate: impacts of simulated brine and elevated pressures, Chem. Eng. J., 353 (2018) 727–735.
  52. M.H. Nie, Y. Yang, Z.J. Zhang, C.X. Yan, X.N. Wang, H.J. Li, W.B. Dong, Degradation of chloramphenicol by thermally activated persulfate in aqueous solution, Chem. Eng. J., 246 (2014) 373–382.
  53. C.Q. Wang, Y.J. Cao, H. Wang, Copper-based catalyst from waste printed circuit boards for effective Fenton-like discoloration of Rhodamine B at neutral pH, Chemosphere, 230 (2019) 278–285.
  54. H. Titouhi, J.-E. Belgaied, Heterogeneous Fenton oxidation of ofloxacin drug by iron alginate support, Environ. Technol., 37 (2016) 2003–2015.
  55. I. Epold, M. Trapido, N. Dulova, Degradation of levofloxacin in aqueous solutions by Fenton, ferrous ion-activated persulfate and combined Fenton/persulfate systems, Chem. Eng. J., 279 (2015) 452–462.
  56. T.H. Xi, X.D. Li, Q.H. Zhang, N. Liu, S. Niu, Z.J. Dong, C. Lyu, Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite, Front. Environ. Sci. Eng., 15 (2021) 55, doi: 10.1007/s11783-020-1347-5.
  57. G. Barzegar, M. Sabaghan, O. Azadbakht, E. Aghayani, M. Mahdavianpour, A. Kadier, S. Fallahizadeh, F. Ghanbari, Ciprofloxacin degradation by catalytic activation of monopersulfate using Mn–Fe oxides: performance and mineralization, Water Sci. Technol., 87 (2023) 1029–1042.
  58. J.F. Li, Y.M. Li, Q.L. Meng, Removal of nitrate by zero-valent iron and pillared bentonite, J. Hazard. Mater., 174 (2010) 188–193.
  59. T. Wang, J. Su, X.Y. Jin, Z.L. Chen, M. Megharaj, R. Naidu, Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution, J. Hazard. Mater., 262 (2013) 819–825.
  60. J.C. Yan, M. Lei, L.H. Zhu, M.N. Anjum, J. Zou, H.Q. Tang, Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate, J. Hazard. Mater., 186 (2011) 1398–1404.
  61. F. Zhu, Y.Y. Wu, Y.K. Liang, H.H. Li, W.J. Liang, Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni, Chem. Eng. J., 389 (2020) 124276, doi: 10.1016/j.cej.2020.124276.
  62. L.C. Zhou, J.J. Ma, H. Zhang, Y.M. Shao, Y.F. Li, Fabrication of magnetic carbon composites from peanut shells and its application as a heterogeneous Fenton catalyst in removal of methylene blue, Appl. Surf. Sci., 324 (2015) 490–498.
  63. C. Kim, J.Y. Ahn, T.Y. Kim, W.S. Shin, I. Hwang, Activation of persulfate by nanosized zero-valent iron (nZVI): mechanisms and transformation products of nZVI, Environ. Sci. Technol., 52 (2018) 3625–3633.
  64. H.Z. Liu, T.A. Bruton, W. Li, J.V. Buren, C. Prasse, F.M. Doyle, D.L. Sedlak, Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: stoichiometric efficiency and transformation products, Environ. Sci. Technol., 50 (2016) 890–898.
  65. Q. Gan, H.J. Hou, S. Liang, J.J. Qiu, S.Y. Tao, L. Yang, W.B. Yu, K.K. Xiao, B.C. Liu, J.P. Hu, Y.F. Wang, J.K. Yang, Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of
    4-chlorophenol, Sci. Total Environ., 725 (2020) 138299, doi: 10.1016/j.scitotenv.2020.138299.
  66. R.Z. Xie, Y.B. Jiang, A. Armutlulu, Z.Y. Shen, B. Lai, H. Wang, One-step fabrication of oxygen vacancy-enriched Fe@Ti/C composite for highly efficient degradation of organic pollutants through persulfate activation, J. Colloid Interface Sci., 583 (2021) 394–403.