References
- Korea Ministry of Government Legislation Home Page, 2021.
Available at www.law.go.kr
- Korea Environment Corporation. Available at www.keco.or.kr
- S.S. Park, N.-S. Park, S.S. Kim, G. Jo, S.M. Yoon, Outlier
detection of water quality data using ensemble empirical mode
decomposition, J. Korean Soc. Environ. Eng., 43 (2021) 160–170.
- U.S. EPA, Online Water Quality Monitoring Primer for Water
Quality Surveillance and Response Systems (EPA 817-B-15–
002A), United States Environmental Protection Agency, 2015a.
Available at https://www.epa.gov/sites/default/files/2015-06/documents/online_water_quality_monitoring_primer.pdf
- U.S. EPA, Summary of Implementation Approaches and Lessons
Learned From the Water Security Initiative Contamination
Warning System Pilots (EPA 817-R-15–002), United States
Environmental Protection Agency, 2015b. Available at https://www.epa.gov/sites/default/files/2015-12/documents/wsi_pilot_summary_report_102715.pdf
- N.-S. Park, S.-S. Kim, I.S. Seo, S.M. Yoon, Application of LPCF
model based on ARIMA model to prediction of water quality
change in water supply system, Desal. Water Treat., 212 (2021)
8–16.
- Y. Zhao, L. Guo, J. Liang, M. Zhang, Seasonal artificial neural
network model for water quality prediction via a clustering
analysis method in a wastewater treatment plant of China,
Desal. Water Treat., 57 (2016) 3452–3465.
- E.S. Salami, M. Salari, M. Ehteshami, N.T. Bidokhti, H. Ghadimi,
Application of artificial neural networks and mathematical
modeling for the prediction of water quality variables (case
study: southwest of Iran), Desal. Water Treat., 57 (2016)
27073–27084.
- S. Wang, T. Lou, C. Zhang, J. Hao, Y. Zhan, L. Ping, Prediction
of heavy metal content in multivariate chaotic time series
based on LSTM, Desal. Water Treat., 197 (2020) 249–260.
- P. Liu, J. Wang, A.K. Sangaiah, Y. Xie, X. Yin, Analysis
and prediction of water quality using LSTM deep neural
networks in IoT environment, Sustainability, 11 (2019),
doi: 10.3390/su11072058.
- Z. Liang, R. Zou, X. Chen, T. Ren, H. Su, Y. Liu, Simulate the
forecast capacity of a complicated water quality model using
the long short-term memory approach, J. Hydrol., 581 (2020)
124432, doi: 10.1016/j.jhydrol.2019.124432.
- Y. Yang, Q. Xiong, C. Wu, Q. Zou, Y. Yu, H. Yi, M. Gao, A study
on water quality prediction by a hybrid CNN-LSTM model
with attention mechanism, Environ. Sci. Pollut. Res., 28 (2021)
55129–55139.
- R. Barzegar, M.T. Aalami, J. Adamowski, Short-term water
quality variable prediction using a hybrid CNN–LSTM deep
learning model, Stochastic Environ. Res. Risk Assess., 34 (2020)
415–433.
- N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih,
Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode
decomposition and the Hilbert spectrum for nonlinear and
non-stationary time series analysis, Proc. R. Soc. London, Ser.
A, 454 (1998) 903–995.
- Z. Wu, N.E. Huang, Ensemble empirical mode decomposition:
a noise-assisted data analysis method, Adv. Adapt. Data Anal.,
1 (2009) 1–41.
- D. Zhang, R. Chang, H. Wang, Y. Wang, H. Wang, S. Chen,
Predicting Water Quality Based on EEMD and LSTM
Networks, Proc. 2021 33rd Chin. Control Decis. Conf. (CCDC),
Kunming, China, 2021, pp. 2372–2377.
- J. Sha, X. Li, M. Zhang, Z.-L. Wan, Comparison of forecasting
models for real-time monitoring of water quality parameters
based on hybrid deep learning neural networks, Water,
13 (2021), doi: 10.3390/w13111547.
- F. Kratzert, D. Klotz, C. Brenner, K. Schulz, M. Herrnegger,
Rainfall-runoff modelling using long short-term memory
(LSTM) networks, Hydrol. Earth Syst. Sci., 22 (2018) 6005–6022.
- Z. Xiang, J. Yan, I. Demir, A rainfall-runoff model with LSTMbased
sequence-to-sequence learning, Water Resour. Res.,
56, (2020), doi: 10.1029/2019WR025326.