References

  1. Korea Ministry of Government Legislation Home Page, 2021. Available at www.law.go.kr
  2. Korea Environment Corporation. Available at www.keco.or.kr
  3. S.S. Park, N.-S. Park, S.S. Kim, G. Jo, S.M. Yoon, Outlier detection of water quality data using ensemble empirical mode decomposition, J. Korean Soc. Environ. Eng., 43 (2021) 160–170.
  4. U.S. EPA, Online Water Quality Monitoring Primer for Water Quality Surveillance and Response Systems (EPA 817-B-15– 002A), United States Environmental Protection Agency, 2015a. Available at https://www.epa.gov/sites/default/files/2015-06/documents/online_water_quality_monitoring_primer.pdf
  5. U.S. EPA, Summary of Implementation Approaches and Lessons Learned From the Water Security Initiative Contamination Warning System Pilots (EPA 817-R-15–002), United States Environmental Protection Agency, 2015b. Available at https://www.epa.gov/sites/default/files/2015-12/documents/wsi_pilot_summary_report_102715.pdf
  6. N.-S. Park, S.-S. Kim, I.S. Seo, S.M. Yoon, Application of LPCF model based on ARIMA model to prediction of water quality change in water supply system, Desal. Water Treat., 212 (2021) 8–16.
  7. Y. Zhao, L. Guo, J. Liang, M. Zhang, Seasonal artificial neural network model for water quality prediction via a clustering analysis method in a wastewater treatment plant of China, Desal. Water Treat., 57 (2016) 3452–3465.
  8. E.S. Salami, M. Salari, M. Ehteshami, N.T. Bidokhti, H. Ghadimi, Application of artificial neural networks and mathematical modeling for the prediction of water quality variables (case study: southwest of Iran), Desal. Water Treat., 57 (2016) 27073–27084.
  9. S. Wang, T. Lou, C. Zhang, J. Hao, Y. Zhan, L. Ping, Prediction of heavy metal content in multivariate chaotic time series based on LSTM, Desal. Water Treat., 197 (2020) 249–260.
  10. P. Liu, J. Wang, A.K. Sangaiah, Y. Xie, X. Yin, Analysis and prediction of water quality using LSTM deep neural networks in IoT environment, Sustainability, 11 (2019), doi: 10.3390/su11072058.
  11. Z. Liang, R. Zou, X. Chen, T. Ren, H. Su, Y. Liu, Simulate the forecast capacity of a complicated water quality model using the long short-term memory approach, J. Hydrol., 581 (2020) 124432, doi: 10.1016/j.jhydrol.2019.124432.
  12. Y. Yang, Q. Xiong, C. Wu, Q. Zou, Y. Yu, H. Yi, M. Gao, A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism, Environ. Sci. Pollut. Res., 28 (2021) 55129–55139.
  13. R. Barzegar, M.T. Aalami, J. Adamowski, Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model, Stochastic Environ. Res. Risk Assess., 34 (2020) 415–433.
  14. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London, Ser. A, 454 (1998) 903–995.
  15. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. Data Anal., 1 (2009) 1–41.
  16. D. Zhang, R. Chang, H. Wang, Y. Wang, H. Wang, S. Chen, Predicting Water Quality Based on EEMD and LSTM Networks, Proc. 2021 33rd Chin. Control Decis. Conf. (CCDC), Kunming, China, 2021, pp. 2372–2377.
  17. J. Sha, X. Li, M. Zhang, Z.-L. Wan, Comparison of forecasting models for real-time monitoring of water quality parameters based on hybrid deep learning neural networks, Water, 13 (2021), doi: 10.3390/w13111547.
  18. F. Kratzert, D. Klotz, C. Brenner, K. Schulz, M. Herrnegger, Rainfall-runoff modelling using long short-term memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22 (2018) 6005–6022.
  19. Z. Xiang, J. Yan, I. Demir, A rainfall-runoff model with LSTMbased sequence-to-sequence learning, Water Resour. Res., 56, (2020), doi: 10.1029/2019WR025326.