References

  1. X. Liu, L. Zhang, Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies, Powder Technol., 277 (2015) 112–119.
  2. J. Xue, H. Wang, P. Li, M. Zhang, J. Yang, Q. Lv, Efficient reclaiming phosphate from aqueous solution using waste limestone modified sludge biochar: mechanism and application as soil amendments, Sci. Total Environ., 799 (2021) 149454, doi: 10.1016/j.scitotenv.2021.149454.
  3. J. Cooper, R. Lombardi, D. Boardman, C. Carliell-Marquet, The future distribution and production of global phosphate rock reserves, Resour. Conserv. Recycl., 57 (2011) 78–86.
  4. Y.V. Nancharaiah, S.V. Mohan, P.N.L. Lens, Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems, Bioresour. Technol., 215 (2016) 173–185.
  5. T.H. Pham, K.M. Lee, M.S. Kim, J. Seo, C. Lee, La-modified ZSM-5 zeolite beads for enhancement in removal and recovery of phosphate, Microporous Mesoporous Mater., 279 (2019) 37–44.
  6. D.D. Nguyen, H.H. Ngo, W. Guo, T.T. Nguyen, S.W. Chang, A. Jang, Y.S. Yoon, Can electrocoagulation process be an appropriate technology for phosphorus removal from municipal wastewater?, Sci. Total Environ., 563 (2016) 549–556.
  7. Y. Yamazaki, T. Gettongsong, M. Mikawa, Y. Amano, M. Machida, Adsorptive removal of phosphate from water by ammonia gas activated polyacrylonitrile fiber, J. Fiber Sci. Technol., 72 (2016) 237–243.
  8. D. Yadav, M. Kapur, P. Kumar, M.K. Mondal, Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue, Process. Saf. Environ., 94 (2015) 402–409.
  9. C. Sun, H. Cao, C. Huang, P. Wang, J. Yin, H. Liu, H. Tian, H. Xu, J. Zhu, Z. Liu, Eggshell based biochar for highly efficient adsorption and recovery of phosphorus from aqueous solution: kinetics, mechanism and potential as phosphorus fertilizer, Bioresour. Technol., 362 (2022) 127851, doi: 10.1016/j.biortech.2022.127851.
  10. Y. Luo, K. Xie, Y. Feng, Q. He, K. Zhang, S. Shen, F. Wang, Synthesis of a La(OH)3 nanorod/walnut shell biochar composite for reclaiming phosphate from aqueous solutions, Colloids Surf., A, 610 (2021) 125736, doi: 10.1016/j. colsurfa.2020.125736.
  11. H. Shin, D. Tiwari, D.-J. Kim, Phosphate adsorption/desorption kinetics and P bioavailability of Mg-biochar from ground coffee waste, J. Water Process Eng., 37 (2020) 101484, doi: 10.1016/j.jwpe.2020.101484.
  12. N. Lv, X. Li, X. Qi, Y. Ren, Calcium-modified granular attapulgite removed phosphorus from synthetic wastewater containing low-strength phosphorus, Chemosphere, 296 (2022) 133898, doi: 10.1016/j.chemosphere.2022.133898.
  13. S. Wang, L. Kong, J. Long, M. Su, Z. Diao, X. Chang, D. Chen, G. Song, K. Shih, Adsorption of phosphorus by calciumflour biochar: isotherm, kinetic and transformation studies, Chemosphere, 195 (2018) 666–672.
  14. A. Syuhada, M. Ameen, M.T. Azizan, A. Aqsha, M.H.M. Yusoff, A. Ramli, M.S. Alnarabiji, F. Sher, In-situ hydrogenolysis of glycerol using hydrogen produced via aqueous phase reforming of glycerol over sonochemically synthesized nickel-based nano-catalyst, Mol. Catal., 514 (2021) 111860, doi: 10.1016/j.mcat.2021.111860.
  15. Q. Bai, Q. Xiong, C. Li, Y. Shen, H. Uyama, Hierarchical porous cellulose/activated carbon composite monolith for efficient adsorption of dyes, Cellulose, 24 (2017) 4275–4289.
  16. J. Cho, D. Kwon, I. Yang, S. An, J.C. Jung, Unexpected activity of MgO catalysts in oxidative coupling of methane: effects of Ca-promoter, Mol. Catal., 510 (2021) 111677, doi: 10.1016/j.mcat.2021.111677.
  17. X. Tang, H. Wang, M. Hou, L. Song, C. Zhou, H. Zhao, L. Shi, Highly efficient adsorption of cadmium(II) onto durable coconut fiber residue, Desal. Water Treat., 57 (2016) 15098–15107.
  18. M.A. Fulazzaky, Z. Majidnia, A. Idris, Mass transfer kinetics of Cd(II) ions adsorption by titania polyvinylalcohol-alginate beads from aqueous solution, Chem. Eng. J., 308 (2017) 700–709.
  19. M.A. Fulazzaky, Determining the resistance of mass transfer for adsorption of the surfactants onto granular activated carbons from hydrodynamic column, Chem. Eng. J., 166 (2011) 832–840.
  20. Y. Peng, D. Xiao, G. Yu, Y. Feng, J. Li, X. Zhao, Y. Tang, L. Wang, Q. Zhang, Effect of an eco-friendly o/w emulsion stabilized with amphiphilic sodium alginate derivatives on lambdacyhalothrin adsorption–desorption on natural soil minerals, J. Environ. Sci., 78 (2019) 230–238.
  21. Q. Feng, M. Chen, P. Wu, X. Zhang, S. Wang, Z. Yu, B. Wang, Simultaneous reclaiming phosphate and ammonium from aqueous solutions by calcium alginate-biochar composite: sorption performance and governing mechanisms, Chem. Eng. J., 429 (2022) 132166, doi: 10.1016/j.cej.2021.132166.
  22. M.A. Fulazzaky, Analysis of global and sequential mass transfers for the adsorption of atrazine and simazine onto granular activated carbons from a hydrodynamic column, Anal. Methods, 4 (2012) 2396–2403.
  23. Y. Zhou, Y. Li, X. Wang, D. Liu, D. Liu, Preparation of amidoxime functionalized titanate nanosheets for efficient extraction of uranium from aqueous solution, J. Solid State Chem., 290 (2020) 121562, doi: 10.1016/j.jssc.2020.121562.
  24. Y. Feng, Y. Luo, Q. He, D. Zhao, K. Zhang, S. Shen, F. Wang, Performance and mechanism of a biochar-based Ca-La composite for the adsorption of phosphate from water, J. Environ. Chem. Eng., 9 (2021) 105267, doi: 10.1016/j.jece.2021.105267.
  25. Y.H. Jiang, A.Y. Li, H. Deng, C.H. Ye, Y.Q. Wu, Y.D. Linmu, H.L. Hang, Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks, Bioresour. Technol., 276 (2019) 183–189.
  26. L. Kong, M. Han, K. Shih, M. Su, Z. Diao, J. Long, D. Chen, L. Hou, Y. Peng, Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus, Environ. Pollut., 233 (2018) 698–705.
  27. L. Fang, J.-s. Li, S. Donatello, C.R. Cheeseman, C.S. Poon, D.C.W. Tsang, Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application, J. Cleaner Prod., 244 (2020) 118853, doi: 10.1016/j.jclepro.2019.118853.
  28. J. Li, L. Cao, B. Li, H. Huang, W. Yu, C. Sun, K. Long, B. Young, Utilization of activated sludge and shell wastes for the preparation of Ca-loaded biochar for phosphate removal and recovery, J. Cleaner Prod., 382 (2023) 135395, doi: 10.1016/j.jclepro.2022.135395.
  29. Y. Zhang, M.S. Akindolie, X. Tian, B. Wu, Q. Hu, Z. Jiang, L. Wang, Y. Tao, B. Cao, J. Qu, Enhanced phosphate scavenging with effective recovery by magnetic porous biochar supported La(OH)3: kinetics, isotherms, mechanisms and applications for water and real wastewater, Bioresour. Technol., 319 (2021) 124232, doi: 10.1016/j.biortech.2020.124232.
  30. S. Zeng, E. Kan, Sustainable use of Ca(OH)2 modified biochar for phosphorus recovery and tetracycline removal from water, Sci. Total Environ., 839 (2022) 156159, doi: 10.1016/j.scitotenv.2022.156159.
  31. P. Cheng, Y. Liu, L. Yang, Q. Ren, X. Wang, Y. Chi, H. Yuan, S. Wang, Y.-X. Ren, Phosphate adsorption using calcium aluminate decahydrate to achieve low phosphate concentrations: batch and fixed-bed column studies, J. Environ. Chem. Eng., 11 (2023) 109377, doi: 10.1016/j.jece.2023.109377.
  32. H. Yin, M. Kong, C. Fan, Batch investigations on P immobilization from wastewaters and sediment using natural calcium rich sepiolite as a reactive material, Water Res., 47 (2013) 4247–4258.
  33. W. Ou, X. Lan, J. Guo, A. Cai, P. Liu, N. Liu, Y. Liu, Y. Lei, Preparation of iron/calcium-modified biochar for phosphate removal from industrial wastewater, J. Cleaner Prod., 383 (2023) 135468, doi: 10.1016/j.jclepro.2022.135468.
  34. X. Liu, J. Lv, Efficient phosphate removal from wastewater by Ca-laden biochar composites prepared from eggshell and peanut shells: a comparison of methods, Sustainability, 15 (2023) 1778, doi: 10.3390/su15031778.
  35. A. Quisperima, S. Pérez, E. Flórez, N. Acelas, Valorization of potato peels and eggshells wastes:
    Ca-biocomposite to remove and recover phosphorus from domestic wastewater, Bioresour. Technol., 343 (2022) 126106, doi: 10.1016/j.biortech.2021.126106.
  36. D. Suteu, S. Coseri, M. Badeanu, C. Zaharia, Valorization of food wastes as sorbent for dye retention from aqueous medium, Desal. Water Treat., 54 (2015) 2570–2580.
  37. I.K. Rind, A. Sarı, M. Tuzen, M.F. Lanjwani, I. Karaman, T.A. Saleh, Synthesis of bentonite/SiO2/magnetite nanostructure as an efficient adsorbent for Bisphenol A removal from waters, Ind. Crops Prod., 201 (2023) 116905, doi: 10.1016/j.indcrop.2023.116905.
  38. A.P. Panda, P. Rout, S.A. Kumar, U. Jha, S.K. Swain, Enhanced performance of a core–shell structured Fe(0)@Fe oxide and Mn(0)@Mn oxide (ZVIM) nanocomposite towards remediation of arsenic contaminated drinking water, J. Mater. Chem. A, 8 (2020) 4318–4333.
  39. X. Liu, J. Fu, Y. Tang, R.L. Smith Jr., X. Qi, Mg-coordinated self-assembly of MgO-doped ordered mesoporous carbons for selective recovery of phosphorus from aqueous solutions, Chem. Eng. J., 406 (2021) 126748, doi: 10.1016/j.cej.2020.126748.
  40. G. Fu, Y. Zhao, S. Zhou, C. Chen, Y. Zhong, Y. Xu, Efficient removal of nitrogen and phosphorus in aqueous solutions using modified water treatment residuals–sodium alginate beads, Environ. Sci. Pollut. Res., 28 (2021) 46233–46246.
  41. I.K. Rind, A. Sarı, M. Tuzen, M.F. Lanjwani, I. Karaman, T.A. Saleh, Influential biosorption of lead from aquatic solution using Escherichia coli/carbon nanofibers, Environ. Nanotechnol. Monit. Manage., 19 (2023) 100776, doi: 10.1016/j.enmm.2022.100776.
  42. L. Pei, F. Yang, X. Xu, H. Nan, X. Gui, L. Zhao, X. Cao, Further reuse of phosphorus-laden biochar for lead sorption from aqueous solution: isotherm, kinetics, and mechanism, Sci. Total Environ., 792 (2021) 148550, doi: 10.1016/j.scitotenv.2021.148550.