References

  1. J. Liu, H. Lin, Y. Dong, Y. He, W. Liu, Y. Shi, The effective adsorption of tetracycline onto MoS2@Zeolite-5: adsorption behavior and interfacial mechanism, J. Environ. Chem. Eng., 9 (2021) 105912, doi: 10.1016/j.jece.2021.105912.
  2. W. Xu, G. Zhang, X. Li, S. Zou, P. Li, Z. Hu, J. Li, Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China, Water Res., 41 (2007) 4526–4534.
  3. B. Hong, Q. Lin, S. Yu, Y. Chen, Y. Chen, P. Chiang, Urbanization gradient of selected pharmaceuticals in surface water at a watershed scale, Sci. Total Environ., 634 (2018) 448–458.
  4. X. Zhang, Y. Li, M. Wu, Y. Pang, Z. Hao, M. Hu, R. Qiu, Z. Chen, Enhanced adsorption of tetracycline by an iron and manganese oxides loaded biochar: kinetics, mechanism and column adsorption, Bioresour. Technol., 320 (2021) 124264, doi: 10.1016/j.biortech.2020.124264.
  5. J. Pan, X. Bai, Y. Li, B. Yang, P. Yang, F. Yu, J. Ma, HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance, Environ. Res., 205 (2022) 112425, doi: 10.1016/j.envres.2021.112425.
  6. Y. Yue, C. Shen, Y. Ge, Biochar accelerates the removal of tetracyclines and their intermediates by altering soil properties, J. Hazard. Mater., 380 (2019) 120821, doi: 10.1016/j.jhazmat.2019.120821.
  7. J.O. Eniola, R. Kumar, A.A. Al-Rashdi, M.A. Barakat, Hydrothermal synthesis of structurally variable binary CuAl, MnAl and ternary CuMnAl hydroxides for oxytetracycline antibiotic adsorption, J. Environ. Chem. Eng., 8 (2020) 103535, doi: 10.1016/j.jece.2019.103535.
  8. N. Saman, N.S. Othman, L.-Y. Chew, Cetyltrimethylammonium bromide functionalized silica nanoparticles (MSN) synthesis using a combined sol–gel and adsorption steps with enhanced adsorption performance of oxytetracycline in aqueous solution, J. Taiwan Inst. Chem. Eng., 112 (2020) 67–77.
  9. B.L. Phoon, C.C. Ong, M.S. Mohamed Saheed, P.-L. Show, J.-S. Chang, T.C. Ling, S.S. Lam, J.C. Juan, Conventional and emerging technologies for removal of antibiotics from wastewater, J. Hazard. Mater., 400 (2020) 122961, doi: 10.1016/j.jhazmat.2020.122961.
  10. T. Lu, X. Xu, X. Liu, T. Sun, Super hydrophilic PVDF based composite membrane for efficient separation of tetracycline, Chem. Eng. J., 308 (2017) 151–159.
  11. M. Minale, Z. Gu, A. Guadie, D.M. Kabtamu, Y. Li, X. Wang, Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation: a review, J. Environ. Manage., 276 (2020) 111310, doi: 10.1016/j.jenvman.2020.111310.
  12. A. Majumdar, U. Ghosh, A. Pal, Novel 2D/2D g-C3N4/Bi4NbO8Cl nano-composite for enhanced photocatalytic degradation of oxytetracycline under visible LED light irradiation, J. Colloid Interface Sci., 584 (2021) 320–331.
  13. Q. Xu, B. Han, H. Wang, Q. Wang, W. Zhang, D. Wang, Effect of extracellular polymer substances on the tetracycline removal during coagulation process, Bioresour. Technol., 309 (2020) 123316, doi: 10.1016/j.biortech.2020.123316.
  14. H. Mazaheri, M. Ghaedi, M.H. Ahmadi Azqhandi, A. Asfaram, Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd(II) removal from a binary aqueous solution by natural walnut carbon, Phys. Chem. Chem. Phys., 19 (2017) 11299–11317.
  15. J. Liang, Y. Fang, Y. Luo, G. Zeng, J. Deng, X. Tan, N. Tang, X. Li, X. He, C. Feng, S. Ye, Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride, Environ. Sci. Pollut. Res., 26 (2019) 5892–5903.
  16. Y.-K. Choi, T.-R. Choi, R. Gurav, S.K. Bhatia, Y.-L. Park, H.J. Kim, E. Kan, Y.-H. Yang, Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures, Sci. Total Environ., 710 (2020) 136282, doi: 10.1016/j.scitotenv.2019.136282.
  17. S.A.R. Ahmadi, M.R. Kalaee, O. Moradi, F. Nosratinia, M. Abdouss, Synthesis of novel zeolitic imidazolate framework (ZIF-67)-zinc oxide (ZnO) nanocomposite (ZnO@ZIF-67) and potential adsorption of pharmaceutical (tetracycline (TCC)) from water, J. Mol. Struct., 1251 (2022) 132013,
    doi: 10.1016/j.molstruc.2021.132013.
  18. Y. Bao, Q. Zhou, Y. Wan, Q. Yu, X. Xie, Effects of soil/solution ratios and cation types on adsorption and desorption of tetracycline in soils, Soil Sci. Soc. Am. J., 74 (2010) 1553–1561.
  19. H. Qiao, X. Wang, P. Liao, C. Zhang, C. Liu, Enhanced sequestration of tetracycline by Mn(II) encapsulated mesoporous silica nanoparticles: synergistic sorption and mechanism, Chemosphere, 284 (2021) 131334, doi: 10.1016/j.chemosphere.2021.131334.
  20. L. Yan, Y. Liu, Y. Zhang, S. Liu, C. Wang, W. Chen, C. Liu, Z. Chen, Y. Zhang, ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline, Bioresour. Technol., 297 (2020) 122381, doi: 10.1016/j.biortech.2019.122381.
  21. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  22. W. Zhai, J. He, P. Han, M. Zeng, X. Gao, Q. He, Adsorption mechanism for tetracycline onto magnetic Fe3O4 nanoparticles: adsorption isotherm and dynamic behavior, location of adsorption sites and interaction bonds, Vacuum, 195 (2022) 110634, doi: 10.1016/j.vacuum.2021.110634.
  23. B. Debnath, M. Majumdar, M. Bhowmik, K.L. Bhowmik, A. Debnath, D.N. Roy, The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology, J. Environ. Manage., 261 (2020) 110235, doi: 10.1016/j.jenvman.2020.110235.
  24. B. Chen, Y. Li, Q. Du, X. Pi, Y. Wang, Y. Sun, M. Wang, Y. Zhang, K. Chen, J. Zhu, Effective removal of tetracycline from water using copper alginate @ graphene oxide with in-situ grown MOF-525 composite: synthesis, characterization and adsorption mechanisms, Nanomaterials, 12 (2022) 2897, doi: 10.3390/nano12172897.
  25. Y. Zhang, Z. Huang, X. Fang, Y. Chen, S. Fan, H. Xu, Preparation of magnetic porous biochar through hydrothermal pretreatment combined with K2FeO4 activation to improve tetracycline removal, Microporous Mesoporous Mater., 343 (2022) 112188, doi: 10.1016/j.micromeso.2022.112188.
  26. F. Jia, D. Zhao, M. Shu, F. Sun, D. Wang, C. Chen, Y. Deng, X. Zhu, Co-doped Fe-MIL-100 as an adsorbent for tetracycline removal from aqueous solution, Environ. Sci. Pollut. Res., 29 (2022) 55026–55038.
  27. Y. Li, Q. Du, T. Liu, Y. Qi, P. Zhang, Z. Wang, Y. Xia, Preparation of activated carbon from Enteromorpha prolifera and its use on cationic red X-GRL removal, Appl. Surf. Sci., 257 (2011) 10621–10627.
  28. M. Li, Y. Li, X. Zhang, H. Zheng, A. Zhang, T. Chen, W. Liu, Y. Yu, J. Liu, Q. Du, D. Wang, Y. Xia, One-step generation of S and N co-doped reduced graphene oxide for high-efficiency adsorption towards methylene blue, RSC Adv., 10 (2020) 37757–37765.
  29. Q. Liao, H. Rong, M. Zhao, H. Luo, Z. Chu, R. Wang, Strong adsorption properties and mechanism of action with regard to tetracycline adsorption of double-network polyvinyl alcohol-copper alginate gel beads, J. Hazard. Mater., 422 (2022) 126863, doi: 10.1016/j.jhazmat.2021.126863.
  30. J. Zhou, K. Zhu, Y. Wang, P. Cui, L. Zhu, H. Wu, M. Hua, Y. Huang, G. Luo, Y. Chao, W. Zhu, Facile hydrothermal synthesis of Cu2MoS4 and FeMoS4 for efficient adsorption of chlortetracycline, Catalysts, 13 (2023) 61, doi: 10.3390/catal13010061.
  31. X. Wang, B. Cheng, L. Zhang, J. Yu, Y. Li, Synthesis of MgNiCo LDH hollow structure derived from ZIF-67 as superb adsorbent for Congo red, J. Colloid Interface Sci., 612 (2022) 598–607.
  32. Y. Guo, C. Yan, P. Wang, L. Rao, C. Wang, Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution, Chem. Eng. J., 387 (2020) 124136, doi: 10.1016/j.cej.2020.124136.
  33. L. Jin, X. Amaya-Mazo, M.E. Apel, S.S. Sankisa, E. Johnson, M.A. Zbyszynska, A. Han, Ca2+ and Mg2+ bind tetracycline with distinct stoichiometries and linked deprotonation, Biophys. Chem., 128 (2007) 185–196.
  34. K. Hemmat, M.R. Khodabakhshi, A. Zeraatkar Moghaddam, Synthesis of nanoscale zero-valent iron modified graphene oxide nanosheets and its application for removing tetracycline antibiotic: response surface methodology, Appl. Organomet. Chem., 35 (2021) e6059, doi: 10.1002/aoc.6059.
  35. A. Paula Fagundes, A. Felipe Viana da Silva, B. Bueno de Morais, D. Lusitâneo Pier Macuvele, J. Nones, H. Gracher Riella, N. Padoin, C. Soares, A novel application of bentonite modified with copper ions in the tetracycline adsorption: an experimental design study, Mater. Lett., 291 (2021) 129552, doi: 10.1016/j.matlet.2021.129552.
  36. Y. Kong, K. Han, Y. Zhuang, B. Shi, Facile synthesis of MOFs templated carbon aerogels with enhanced tetracycline adsorption performance, Water, 14 (2022) 504, doi: 10.3390/w14030504.
  37. Y. Zhang, Y. Li, W. Xu, M. Cui, M. Wang, B. Chen, Y. Sun, K. Chen, L. Li, Q. Du, X. Pi, Y. Wang, Filtration and adsorption of tetracycline in aqueous solution by copper alginate-carbon nanotubes membrane which has the muscle-skeleton structure, Chem. Eng. Res. Des., 183 (2022) 424–438.
  38. X. Mi, M. Wang, F. Zhou, X. Chai, W. Wang, F. Zhang, S. Meng, Y. Shang, W. Zhao, G. Li, Preparation of
    La-modified magnetic composite for enhanced adsorptive removal of tetracycline, Environ. Sci. Pollut. Res., 24 (2017) 17127–17135.
  39. W. Wang, M. Gao, M. Cao, J. Dan, H. Yang, Self-propagating synthesis of Zn-loaded biochar for tetracycline elimination, Sci. Total Environ., 759 (2021) 143542, doi: 10.1016/j.scitotenv.2020.143542.
  40. Y. Ma, M. Li, P. Li, L. Yang, L. Wu, F. Gao, X. Qi, Z. Zhang, Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal, Bioresour. Technol., 319 (2021) 124199, doi: 10.1016/j.biortech.2020.124199.
  41. G. Sharma, S. Bhogal, A. Kumar, Mu. Naushad, S. Sharma, T. Ahamad, F.J. Stadler, AgO/MgO/FeO@Si3N4 nanocomposite with robust adsorption capacity for tetracycline antibiotic removal from aqueous system, Adv. Powder Technol., 31 (2020) 4310–4318.
  42. S. Biniak, G. Szymański, J. Siedlewski, A. Świątkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon, 35 (1997) 1799–1810.
  43. Z. Yan, L. Liu, Y. Zhang, J. Liang, J. Wang, Z. Zhang, X. Wang, Activated semi-coke in SO2 removal from flue gas: selection of activation methodology and desulfurization mechanism study, Energy Fuels, 27 (2013) 3080–3089.
  44. N. Chubar, V. Gerda, D. Banerjee, G. Yablokova, Effect of Fe(II)/Ce(III) dosage ratio on the structure and anion adsorptive removal of hydrothermally precipitated composites: insights from EXAFS/XANES, XRD and FT-IR, J. Colloid Interface Sci., 487 (2017) 388–400.
  45. J. Shangguan, C. Li, M. Miao, Z. Yang, Surface characterization and SO2 removal activity of activated semi-coke with heat treatment, New Carbon Mater., 23 (2008) 37–43.
  46. Z. Zhang, H. Liu, L. Wu, H. Lan, J. Qu, Preparation of amino- Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper, Chemosphere, 138 (2015) 625–632.
  47. J. Yang, S. Ren, T. Zhang, Z. Su, H. Long, M. Kong, L. Yao, Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO, Chem. Eng. J., 379 (2020) 122398, doi: 10.1016/j.cej.2019.122398.
  48. S. Li, W. Huang, P. Yang, Z. Li, B. Xia, M. Li, C. Xue, D. Liu, One-pot synthesis of N-doped carbon intercalated molybdenum disulfide nanohybrid for enhanced adsorption of tetracycline from aqueous solutions, Sci. Total Environ., 754 (2021) 141925, doi: 10.1016/j.scitotenv.2020.141925.
  49. S. Zhu, P. Zhang, J. Zhang, X. Song, Y. Wang, X. Wang, J. Liu, B. Sun, Efficient adsorption of tetracycline in water by Mn and Ce codoped MIL-100 composite oxide, Desal. Water Treat., 283 (2023) 185–195.
  50. B. Sun, H. Zhou, J. Zhang, A. Hu, J. Mao, Y. Wang, X. Wang, S. Zhu, Preparation and characterization of a spherical Cu/Mn/Ce ternary nanocomposite oxide with high adsorption efficiency of tetracycline, Desal. Water Treat., 264 (2022) 270–279.
  51. S. Sun, Z. Yang, J. Cao, Y. Wang, W. Xiong, Copper-doped ZIF-8 with high adsorption performance for removal of tetracycline from aqueous solution, J. Solid State Chem., 285 (2020) 121219, doi: 10.1016/j.jssc.2020.121219.
  52. J. Tang, Y. Ma, C. Zeng, L. Yang, S. Cui, S. Zhi, F. Yang, Y. Ding, K. Zhang, Z. Zhang, Fe-Al bimetallic oxides functionalizedbiochar via ball milling for enhanced adsorption of tetracycline in water, Bioresour. Technol., 369 (2023) 128385, doi: 10.1016/j.biortech.2022.128385.