References
- Y. Yang, X. Mou, B. Wen, X. Liu, Soil carbon, nitrogen and
phosphorus concentrations and stoichiometries across a
chronosequence of Restored Inland Soda Saline-Alkali
Wetlands, Western Songnen Plain, Northeast China, Chin.
Geogr. Sci., 30 (2020) 934–946.
- A.L. Hinson, R.A. Feagin, M. Eriksson, Environmental controls
on the distribution of tidal wetland soil organic carbon in
the Continental United States, Global Biogeochem. Cycles,
33 (2019) 1408–1422.
- J.G. Ochoa-Gómez, S.E. Lluch-Cota, V.H. Rivera-Monroy,
D.B. Lluch-Cota, E. Troyo-Diéguez, W. Oechel, E. Serviere-Zaragoza, Mangrove wetland productivity and carbon stocks
in an arid zone of the Gulf of California (La Paz Bay, Mexico),
For. Ecol. Manage., 442 (2019) 135–147.
- D. Xiao, L. Deng, D.-G. Kim, C. Huang, K. Tian, Carbon budgets
of wetland ecosystems in China, Global Change Biol., 25 (2019)
2061–2076.
- L.G. Chambers, H.E. Steinmuller, J.L. Breithaupt, Toward a
mechanistic understanding of “peat collapse” and its potential
contribution to coastal wetland loss, Ecology: Ecol. Soc.
America, 100 (2019) e02720, doi: 10.1002/ecy.2720.
- S.R. Padhy, P. Bhattacharyya, P.K. Dash, K.S. Roy, S. Neogi,
M.J. Baig, P. Swain, A.K. Nayak, T. Mohapatra, Enhanced labile
carbon flow in soil-microbes-plant-atmospheric continuum
in rice under elevated CO2 and temperature leads to positive
climate change feed-back, Appl. Soil Ecol., 155 (2020) 103657,
doi: 10.1016/j.apsoil.2020.103657.
- A.L. Ganesan, A.C. Stell, N. Gedney, E. Comyn-Platt,
G. Hayman, M. Rigby, B. Poulter, E.R.C. Hornibrook, Spatially
resolved isotopic source signatures of wetland methane
emissions, Geophys. Res. Lett., 45 (2018) 3737–3745.
- X. Yao, C. Song, Effect of different factors dominated by water
level environment on wetland carbon emissions, Environ. Sci.
Pollut. Res., 29 (2022) 74150–74162.
- G. Bonetti, S.M. Trevathan-Tackett, P.E. Carnell, S. Treby,
P.I. Macreadie, Local vegetation and hydroperiod influence
spatial and temporal patterns of carbon and microbe response
to wetland rehabilitation, Appl. Soil Ecol., 163 (2021) 103917,
doi: 10.1016/j.apsoil.2021.103917.
- D. Were, F. Kansiime, T. Fetahi, H. Thomas, Carbon dioxide
and methane fluxes from a tropical freshwater wetland under
natural and rice paddy conditions: implications for climate
change mitigation, Wetlands Global Change, 41 (2021) 1–12,
doi: 10.1007/s13157-021-01451-4.
- L. Huo, Y. Zou, X. Lyu, Z. Zhang, X. Wang, Y. An, Effect of
wetland reclamation on soil organic carbon stability in peat
mire soil around Xingkai Lake in Northeast China, Chin. Geogr.
Sci., 28 (2018) 325–336.
- L. Wei, Z. Zhu, S. Liu, M. Xiao, J. Wang, Y. Deng, Y. Kuzyakov,
J. Wu, T. Ge, Temperature sensitivity (Q10) of stable, primed and
easily available organic matter pools during decomposition in
paddy soil, Appl. Soil Ecol., 157 (2021) 103752, doi: 10.1016/j.apsoil.2020.103752.
- Y. Liu, M. Jiang, X. Lu, Y. Lou, B. Liu, Carbon, nitrogen and
phosphorus contents of wetland soils in relation to environment
factors in Northeast China, Wetlands, 37 (2017) 153–161.
- G. Bonetti, S.M. Trevathan-Tackett, P.E. Carnell, S. Treby,
P.I. Macreadie, Local vegetation and hydroperiod influence
spatial and temporal patterns of carbon and microbe response
to wetland rehabilitation, Appl. Soil Ecol., 163 (2021) 103917,
doi: 10.1016/j.apsoil.2021.103917.
- Y. Guan, J. Bai, X. Tian, L. Zhi, Z. Yu, Integrating ecological
and socio-economic systems by carbon metabolism in a typical
wetland city of China, J. Cleaner Prod., 279 (2021) 123342,
doi: 10.1016/j.jclepro.2020.123342.
- C.D. Ficken, S.J. Connor, R. Rooney, D. Cobbaert, Drivers,
pressures, and state responses to inform long-term oil sands
wetland monitoring program objectives, Wetlands Ecol.
Manage., 30 (2022) 47–66.
- H. Sun, Q. Xin, Z. Ma, S. Lan, Effects of plant diversity on
carbon dioxide emissions and carbon removal in laboratoryscale
constructed wetland, Environ. Sci. Pollut. Res. Int.,
26 (2019) 5076–5082.
- H. Yang, X. Chen, J. Tang, L. Zhang, C. Zhang, D.C. Perry,
W. You, External carbon addition increases nitrate removal
and decreases nitrous oxide emission in a restored wetland,
Ecol. Eng., 138 (2019) 200–208.
- J. Jia, H. Jian, D. Xie, Z. Gu, C. Chen, Multi-scale decomposition
of energy-related industrial carbon emission by an extended
logarithmic mean Divisia index: a case study of Jiangxi,
China, Energy Effic., 12 (2019) 2161–2186.
- A. Song, X. Yang, X. Zhang, F. Wang, W. Huang, Ecology
environment research about carbon emission efficiency in
China based on a novel super epsilon-based measures (SEBM)
model, Appl. Ecol. Environ. Res., 17 (2019) 1109–1128.
- T. Peng, H. Deng, Research on the sustainable development
process of low-carbon pilot cities: the case study of Guiyang,
a low-carbon pilot city in south-west China, Environ. Dev.
Sustainability, 23 (2021) 2382–2403.
- M. Du, J. Antunes, P. Wanke, Z. Chen, Ecological efficiency
assessment under the construction of low-carbon city: a
perspective of green technology innovation, J. Environ. Plann.
Manage., 65 (2022) 1727–1752.
- V.W.Y. Tam, K.N. Le, C.N.N. Tran, I.M.C.S. Illankoon, A review
on international ecological legislation on energy consumption:
greenhouse gas emission management, Int. J. Construct.
Manage., 21 (2021) 631–647.
- Y. Chen, H. Lu, J. Li, J. Xia, Effects of land use cover change
on carbon emissions and ecosystem services in Chengyu urban
agglomeration, China, Stochastic Environ. Res. Risk Assess.,
34 (2020) 1197–1215.
- S.A.R. Shah, S.A.A. Naqvi, S. Anwar, Exploring the linkage
among energy intensity, carbon emission and urbanization in
Pakistan: fresh evidence from ecological modernization and
environment transition theories, Environ. Sci. Pollut. Res.,
27 (2020) 40907–40929.
- H. Jiang, J. Peng, J. Dong, Z. Zhang, Z. Xu, J. Meersmans,
Linking ecological background and demand to identify
ecological security patterns across the Guangdong-Hong
Kong-Macao Greater Bay Area in China, Landscape Ecol.,
36 (2021) 2135–2150.
- Y. Sun, L. Qian, Z. Liu, The carbon emissions level of China’s
service industry: an analysis of characteristics and influencing
factors, Environ. Dev. Sustainability, 24 (2022) 13557–13582.
- C. Sun, The correlation between green finance and carbon
emissions based on improved neural network, Neural Comput.
Appl., 34 (2022) 12399–12413.
- J. Wang, C.W. Yu, S.-J. Cao, Technology pathway of efficient
and climate-friendly cooling in buildings: towards carbon
neutrality, Indoor Built Environ., 30 (2021) 1307–1311.
- Q. Li, The view of technological innovation in coal industry
under the vision of carbon neutralization, Int. J. Coal Sci.
Technol., 8 (2021) 1197–1207.
- X. Lyu, A. Shi, X. Wang, Research on the impact of carbon
emission trading system on low-carbon technology innovation,
Carbon Manage., 11 (2020) 183–193.
- K. Zickfeld, D. Azevedo, S. Mathesius, H. Damon Matthews,
Asymmetry in the climate–carbon cycle response to positive
and negative CO2 emissions, Nat. Clim. Change, 11 (2021)
613–617.
- K. Liu, Y. Qiao, T. Shi, Q. Zhou, Study on coupling coordination
and spatiotemporal heterogeneity between economic
development and ecological environment of cities along
the Yellow River Basin, Environ. Sci. Pollut. Res., 28 (2021)
6898–6912.
- Y. Zhou, Y. Kong, T. Zhang, The spatial and temporal evolution
of provincial eco-efficiency in China based on SBM modified
three-stage data envelopment analysis, Environ. Sci. Pollut.
Res., 27 (2020) 8557–8569.
- M. Aydin, Y.E. Turan, The influence of financial openness,
trade openness, and energy intensity on ecological footprint:
revisiting the environmental Kuznets curve hypothesis
for BRICS countries, Environ. Sci. Pollut. Res., 27 (2020)
43233–43245.