References

  1. Y. Yang, X. Mou, B. Wen, X. Liu, Soil carbon, nitrogen and phosphorus concentrations and stoichiometries across a chronosequence of Restored Inland Soda Saline-Alkali Wetlands, Western Songnen Plain, Northeast China, Chin. Geogr. Sci., 30 (2020) 934–946.
  2. A.L. Hinson, R.A. Feagin, M. Eriksson, Environmental controls on the distribution of tidal wetland soil organic carbon in the Continental United States, Global Biogeochem. Cycles, 33 (2019) 1408–1422.
  3. J.G. Ochoa-Gómez, S.E. Lluch-Cota, V.H. Rivera-Monroy, D.B. Lluch-Cota, E. Troyo-Diéguez, W. Oechel, E. Serviere-Zaragoza, Mangrove wetland productivity and carbon stocks in an arid zone of the Gulf of California (La Paz Bay, Mexico), For. Ecol. Manage., 442 (2019) 135–147.
  4. D. Xiao, L. Deng, D.-G. Kim, C. Huang, K. Tian, Carbon budgets of wetland ecosystems in China, Global Change Biol., 25 (2019) 2061–2076.
  5. L.G. Chambers, H.E. Steinmuller, J.L. Breithaupt, Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss, Ecology: Ecol. Soc. America, 100 (2019) e02720, doi: 10.1002/ecy.2720.
  6. S.R. Padhy, P. Bhattacharyya, P.K. Dash, K.S. Roy, S. Neogi, M.J. Baig, P. Swain, A.K. Nayak, T. Mohapatra, Enhanced labile carbon flow in soil-microbes-plant-atmospheric continuum in rice under elevated CO2 and temperature leads to positive climate change feed-back, Appl. Soil Ecol., 155 (2020) 103657, doi: 10.1016/j.apsoil.2020.103657.
  7. A.L. Ganesan, A.C. Stell, N. Gedney, E. Comyn-Platt, G. Hayman, M. Rigby, B. Poulter, E.R.C. Hornibrook, Spatially resolved isotopic source signatures of wetland methane emissions, Geophys. Res. Lett., 45 (2018) 3737–3745.
  8. X. Yao, C. Song, Effect of different factors dominated by water level environment on wetland carbon emissions, Environ. Sci. Pollut. Res., 29 (2022) 74150–74162.
  9. G. Bonetti, S.M. Trevathan-Tackett, P.E. Carnell, S. Treby, P.I. Macreadie, Local vegetation and hydroperiod influence spatial and temporal patterns of carbon and microbe response to wetland rehabilitation, Appl. Soil Ecol., 163 (2021) 103917, doi: 10.1016/j.apsoil.2021.103917.
  10. D. Were, F. Kansiime, T. Fetahi, H. Thomas, Carbon dioxide and methane fluxes from a tropical freshwater wetland under natural and rice paddy conditions: implications for climate change mitigation, Wetlands Global Change, 41 (2021) 1–12, doi: 10.1007/s13157-021-01451-4.
  11. L. Huo, Y. Zou, X. Lyu, Z. Zhang, X. Wang, Y. An, Effect of wetland reclamation on soil organic carbon stability in peat mire soil around Xingkai Lake in Northeast China, Chin. Geogr. Sci., 28 (2018) 325–336.
  12. L. Wei, Z. Zhu, S. Liu, M. Xiao, J. Wang, Y. Deng, Y. Kuzyakov, J. Wu, T. Ge, Temperature sensitivity (Q10) of stable, primed and easily available organic matter pools during decomposition in paddy soil, Appl. Soil Ecol., 157 (2021) 103752, doi: 10.1016/j.apsoil.2020.103752.
  13. Y. Liu, M. Jiang, X. Lu, Y. Lou, B. Liu, Carbon, nitrogen and phosphorus contents of wetland soils in relation to environment factors in Northeast China, Wetlands, 37 (2017) 153–161.
  14. G. Bonetti, S.M. Trevathan-Tackett, P.E. Carnell, S. Treby, P.I. Macreadie, Local vegetation and hydroperiod influence spatial and temporal patterns of carbon and microbe response to wetland rehabilitation, Appl. Soil Ecol., 163 (2021) 103917, doi: 10.1016/j.apsoil.2021.103917.
  15. Y. Guan, J. Bai, X. Tian, L. Zhi, Z. Yu, Integrating ecological and socio-economic systems by carbon metabolism in a typical wetland city of China, J. Cleaner Prod., 279 (2021) 123342, doi: 10.1016/j.jclepro.2020.123342.
  16. C.D. Ficken, S.J. Connor, R. Rooney, D. Cobbaert, Drivers, pressures, and state responses to inform long-term oil sands wetland monitoring program objectives, Wetlands Ecol. Manage., 30 (2022) 47–66.
  17. H. Sun, Q. Xin, Z. Ma, S. Lan, Effects of plant diversity on carbon dioxide emissions and carbon removal in laboratoryscale constructed wetland, Environ. Sci. Pollut. Res. Int., 26 (2019) 5076–5082.
  18. H. Yang, X. Chen, J. Tang, L. Zhang, C. Zhang, D.C. Perry, W. You, External carbon addition increases nitrate removal and decreases nitrous oxide emission in a restored wetland, Ecol. Eng., 138 (2019) 200–208.
  19. J. Jia, H. Jian, D. Xie, Z. Gu, C. Chen, Multi-scale decomposition of energy-related industrial carbon emission by an extended logarithmic mean Divisia index: a case study of Jiangxi, China, Energy Effic., 12 (2019) 2161–2186.
  20. A. Song, X. Yang, X. Zhang, F. Wang, W. Huang, Ecology environment research about carbon emission efficiency in China based on a novel super epsilon-based measures (SEBM) model, Appl. Ecol. Environ. Res., 17 (2019) 1109–1128.
  21. T. Peng, H. Deng, Research on the sustainable development process of low-carbon pilot cities: the case study of Guiyang, a low-carbon pilot city in south-west China, Environ. Dev. Sustainability, 23 (2021) 2382–2403.
  22. M. Du, J. Antunes, P. Wanke, Z. Chen, Ecological efficiency assessment under the construction of low-carbon city: a perspective of green technology innovation, J. Environ. Plann. Manage., 65 (2022) 1727–1752.
  23. V.W.Y. Tam, K.N. Le, C.N.N. Tran, I.M.C.S. Illankoon, A review on international ecological legislation on energy consumption: greenhouse gas emission management, Int. J. Construct. Manage., 21 (2021) 631–647.
  24. Y. Chen, H. Lu, J. Li, J. Xia, Effects of land use cover change on carbon emissions and ecosystem services in Chengyu urban agglomeration, China, Stochastic Environ. Res. Risk Assess., 34 (2020) 1197–1215.
  25. S.A.R. Shah, S.A.A. Naqvi, S. Anwar, Exploring the linkage among energy intensity, carbon emission and urbanization in Pakistan: fresh evidence from ecological modernization and environment transition theories, Environ. Sci. Pollut. Res., 27 (2020) 40907–40929.
  26. H. Jiang, J. Peng, J. Dong, Z. Zhang, Z. Xu, J. Meersmans, Linking ecological background and demand to identify ecological security patterns across the Guangdong-Hong Kong-Macao Greater Bay Area in China, Landscape Ecol., 36 (2021) 2135–2150.
  27. Y. Sun, L. Qian, Z. Liu, The carbon emissions level of China’s service industry: an analysis of characteristics and influencing factors, Environ. Dev. Sustainability, 24 (2022) 13557–13582.
  28. C. Sun, The correlation between green finance and carbon emissions based on improved neural network, Neural Comput. Appl., 34 (2022) 12399–12413.
  29. J. Wang, C.W. Yu, S.-J. Cao, Technology pathway of efficient and climate-friendly cooling in buildings: towards carbon neutrality, Indoor Built Environ., 30 (2021) 1307–1311.
  30. Q. Li, The view of technological innovation in coal industry under the vision of carbon neutralization, Int. J. Coal Sci. Technol., 8 (2021) 1197–1207.
  31. X. Lyu, A. Shi, X. Wang, Research on the impact of carbon emission trading system on low-carbon technology innovation, Carbon Manage., 11 (2020) 183–193.
  32. K. Zickfeld, D. Azevedo, S. Mathesius, H. Damon Matthews, Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions, Nat. Clim. Change, 11 (2021) 613–617.
  33. K. Liu, Y. Qiao, T. Shi, Q. Zhou, Study on coupling coordination and spatiotemporal heterogeneity between economic development and ecological environment of cities along the Yellow River Basin, Environ. Sci. Pollut. Res., 28 (2021) 6898–6912.
  34. Y. Zhou, Y. Kong, T. Zhang, The spatial and temporal evolution of provincial eco-efficiency in China based on SBM modified three-stage data envelopment analysis, Environ. Sci. Pollut. Res., 27 (2020) 8557–8569.
  35. M. Aydin, Y.E. Turan, The influence of financial openness, trade openness, and energy intensity on ecological footprint: revisiting the environmental Kuznets curve hypothesis for BRICS countries, Environ. Sci. Pollut. Res., 27 (2020) 43233–43245.