References

  1. I. Manisalidis, E. Stavropoulou, A. Stavropoulos, E. Bezirtzoglou, Environmental and health impacts of air pollution: a review, Front. Public Health, 8 (2020) 14–27.
  2. R.R. Appannagari, Environmental pollution causes and consequences: a study, North Asian Int. Res. J. Social Sci. Humanit., 3 (2017) 151–161.
  3. S. Mitra, A.J. Chakraborty, A.M. Tareq, T.B. Emran, F. Nainu, A. Khusro, A.M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi, J. Simal-Gandara, Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity, J. King Saud Univ. Sci., 34 (2022) 101865, doi: 10.1016/j.ksus.2022.101865.
  4. F. Parvin, S. Islam, Z. Urmy, S. Ahmed, A.S. Islam, A study on the solutions of environment pollutions and worker’s health problems caused by textile manufacturing operations, Biomed. J. Sci. Tech. Res., 28 (2020) 21831–21844.
  5. L.D. Ardila-Leal, R.A. Poutou-Piñales, A.M. Pedroza- Rodríguez, B.E. Quevedo-Hidalgo, A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases, Molecules, 26 (2021) 3813, doi: 10.3390/molecules26133813.
  6. N.Y. Donkadokula, A.K. Kola, I. Naz, D. Saroj, A review on advanced physico-chemical and biological textile dye wastewater treatment techniques, Rev. Environ. Sci. Biotechnol., 19 (2020) 543–560.
  7. F. Touahra, S. Zemmache, S. Djema, R. Chebout, D. Lerari, K. Bachari, A new approach to the synthesis of CuFe2O4@CeO2 direct Z‐scheme with a core‐shell structure for enhanced photo‐degradation of methyl violet under ultraviolet and visible‐light irradiation, Environ. Prog. Sustainable Energy, 41 (2022) e13865, doi: 10.1002/ep.13865.
  8. E.K. Radwan, H.H.A. Ghafar, A.S. Moursy, C.H. Langford, A.H. Bedair, G. Achari, Adsorptive removal of hazardous organic water pollutants by humic acid–carbon hybrid materials: kinetics and isotherm study, Desal. Water Treat., 80 (2017) 297–305.
  9. P. Hu, L. Zhang, J. Wang, R. Huang, Removal of methyl orange from aqueous solution with crosslinked quaternized chitosan/bentonite composite, Desal. Water Treat., 80 (2017) 370–379.
  10. D. Chaillot, S. Bennici, J. Brendlé, Layered double hydroxides and LDH-derived materials in chosen environmental applications: a review, Environ. Sci. Pollut. Res., 28 (2021) 24375–24405.
  11. Z. Li, J. Zhang, C. Qu, Y. Tang, M. Slaný, Synthesis of Mg-Al hydrotalcite clay with high adsorption capacity, Materials, 14 (2021) 7231, doi: 10.3390/ma14237231.
  12. X. Liang, Y. Zang, Y. Xu, X. Tan, W. Hou, L. Wang, Y. Sun, Sorption of metal cations on layered double hydroxides, Colloids Surf., A, 433 (2013) 122–131.
  13. A. Machrouhi, N. Taoufik, A. Elhalil, H. Tounsadi, Z. Rais, N. Barka, Patent blue V dye adsorption by fresh and calcined Zn/Al LDH: effect of process parameters and experimental design optimization, J. Compos. Sci., 6 (2022) 115, doi: 10.3390/jcs6040115.
  14. A. El Khanchaoui, M. Sajieddine, M. Mansori, A. Essoumhi, Anionic dye adsorption on ZnAl hydrotalcite-type and regeneration studies based on “memory effect”, Int. J. Environ. Anal. Chem., 102 (2022) 3542–3560.
  15. P.N. Patil, D.V. Sawant, R.N. Deshmukh, Physico-chemical parameters for testing of water - a review, Int. J. Environ. Sci., 3 (2012) 1194–1207.
  16. B. Djebarri, N. Aider, F. Touahra, R. Chebout, D. Lerari, K. Bachari, D. Halliche, Synergistic effect of bimetallic Ni-based catalysts derived from hydrotalcite on stability and coke resistance for dry reforming of methane, Chem. Afr., (2023), doi: 10.1007/s42250-023-00772-7.
  17. A.A. Alghamdi, A.-B. Al-Odayni, W.S. Saeed, A. Al-Kahtani, F.A. Alharthi, T. Aouak, Efficient adsorption of lead(II) from aqueous phase solutions using polypyrrole-based activated carbon, Materials, 12 (2019) 2020, doi: 10.3390/ma12122020.
  18. E.S. Zhitova, H. Chris Greenwell, M.G. Krzhizhanovskaya, D.C. Apperley, I.V. Pekov, V.N. Yakovenchuk, Thermal evolution of natural layered double hydroxides: insight from quintinite, hydrotalcite, stichtite, and iowaite as reference samples for Co3– and Cl-members of the hydrotalcite supergroup, Minerals, 10 (2020) 961, doi: 10.3390/min10110961.
  19. Z. Meng, F. Lv, X. Li, Q. Zhang, P.K. Chu, S. Komarneni, Y. Zhang, Simultaneous arsenate and alkali removal from alkaline wastewater by in-situ formation of Zn–Al layered double hydroxide, Microporous Mesoporous Mater., 227 (2016) 137–143.
  20. M.A. González, R. Trócoli, I. Pavlovic, C. Barriga, F. La Mantia, Capturing Cd(II) and Pb(II) from contaminated water sources by electro-deposition on hydrotalcite-like compounds, Phys. Chem. Chem. Phys., 18 (2016) 1838–1845.
  21. Z. Yu, D. Chen, M. Rønning, T. Vrålstad, E. Ochoa-Fernández, A. Holmen, Large-scale synthesis of carbon nanofibers on Ni–Fe–Al hydrotalcite derived catalysts: I. Preparation and characterization of the Ni–Fe–Al hydrotalcites and their derived catalysts, Appl. Catal., A, 338 (2008) 136–146.
  22. X. Yan, Z. Tian, W. Peng, J. Zhang, Y. Tong, J. Li, D. Sun, H. Ge, J. Zhang, Synthesis of nano-octahedral MgO via a solvothermal-solid-decomposition method for the removal of methyl orange from aqueous solutions, RSC Adv., 10 (2020) 10681–10688.
  23. M. Tangarfa, N.S.A. Hassani, Experimental Study of Tannic Acid Adsorption on Fluorite Surface: Particle Size Effect and Isotherm Modelling, 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), IEEE, Meknes, Morocco 2022.
  24. C.L. Qiao, Y.M. Xu, Y. Yin, Y.X. Xu, Y.H. Xiao, C.Q. Liu, Adsorption of methyl orange on ZnO supported by seawatermodified red mud, Water Sci. Technol., 85 (2022) 2208–2224.
  25. A.K. Cordova Estrada, F. Cordova Lozano, R.A. Lara Díaz, Thermodynamics and kinetic studies for the adsorption process of methyl orange by magnetic activated carbons, Air Soil Water Res., 14 (2021) 1–11, doi: 10.1177/11786221211013336.
  26. M.A. Hanoon, M.J. Ahmed, Adsorption of methyl orange from wastewater by using biochar, Iraqi J. Chem. Pet. Eng., 20 (2019) 23–29.
  27. K. Yang, L.G. Yan, Y.M. Yang, S.J. Yu, R.R. Shan, H.Q. Yu, B.C. Zhu, B. Du, Adsorptive removal of phosphate by Mg-Al and Zn-Al layered double hydroxides: kinetics, isotherms and mechanisms, Sep. Purif. Technol., 124 (2014) 36–42.
  28. Y. Raji, A. Nadi, M. Rouway, S. Jamoudi Sbai, W. Yassine, A. Elmahbouby, O. Cherkaoui, S. Zyade, Efficient adsorption of methyl orange on nanoporous carbon from agricultural wastes: characterization, kinetics, thermodynamics, regeneration and adsorption mechanism, J. Compos. Sci., 6 (2022) 385, doi: 10.3390/jcs6120385.
  29. M. Gouamid, M.R. Ouahrani, M.B. Bensaci, Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using date palm leaves, Energy Procedia, 36 (2013) 898–907.
  30. D. Balarak, J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi, S. Agarwal, V.K. Gupta, The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: isotherm, kinetic and thermodynamic studies, Colloids Interface Sci. Commun., 7 (2015) 16–19.
  31. D. Humelnicu, I. Zinicovscaia, I. Humelnicu, M. Ignat, N. Yushin, D. Grozdov, Study on the SBA-15 silica and ETS-10 titanosilicate as efficient adsorbents for Cu(II) removal from aqueous solution, Water, 14 (2022) 857–862.
  32. S. Kalam, S.A. Abu-Khamsin, M.S. Kamal, S. Patil, Surfactant adsorption isotherms: a review, ACS Omega, 6 (2021) 32342–32348.
  33. L.M. Silva, M.J. Muñoz-Peña, J.R. Domínguez-Vargas, T. González, E.M. Cuerda-Correa, Kinetic and equilibrium adsorption parameters estimation based on a heterogeneous intraparticle diffusion model, Surf. Interfaces, 22 (2021) 100791–100800.
  34. S. Karmaker, F. Sintaha, T.K. Saha, Kinetics, isotherm and thermodynamic studies of the adsorption of Reactive Red 239 dye from aqueous solution by chitosan 8B, Adv. Biol. Chem., 9 (2019), doi: 10.4236/abc.2019.91001.
  35. M.V. Maslova, V.I. Ivanenko, N.Yu. Yanicheva, N.V. Mudruk, Comparison of the sorption kinetics of lead(II) and zinc(II) on titanium phosphate ion-exchanger, Int. J. Mol. Sci., 21 (2020) 447, doi: 10.3390/ijms21020447.
  36. P. Haller, I. Machado, J. Torres, A. Vila, N. Veiga, Fe(III)-compleximprinted polymers for the green oxidative degradation of the methyl orange dye pollutant, Polymers, 13 (2021) 3127, doi: 10.3390/polym13183127.
  37. A. Kali, A. Amar, I. Loulidi, C. Hadey, M. Jabri, A.A. Alrashdi, H. Lgaz, M. Sadoq, A. El-Kordy, F. Boukhlifi, Efficient adsorption removal of an anionic azo dye by lignocellulosic waste material and sludge recycling into combustible briquettes, Colloids Interfaces, 6 (2022) 22, doi: 10.3390/colloids6020022.
  38. X. Wang, J. Baker, K. Carlson, Z. Li, Mechanisms of selected anionic dye removal by clinoptilolite, Crystals, 12 (2022) 727, doi: 10.3390/cryst12050727.
  39. R. Nandini, B. Vishalakshi, A study of interaction of methyl orange with some polycations, E-J. Chem., 9 (2012) 343928, doi: 10.1155/2012/343928.
  40. B. Grégoire, J.L. Bantignies, R. Le-Parc, B. Prélot, J. Zajac, G. Layrac, D. Tichit, G. Martin-Gassin, Multiscale mechanistic study of the adsorption of methyl orange on the external surface of layered double hydroxide, J. Phys. Chem. C, 123 (2019) 22212–22220.
  41. R. Kumar, G. Kumar, A. Umar, Zinc oxide nanomaterials for photocatalytic degradation of methyl orange: a review, Nanosci. Nanotechnol. Lett., 6 (2014) 631–650.