References

  1. N.A.A. Qasem, R.H. Mohammed, D.U. Lawal, Removal of heavy metal ions from wastewater: a comprehensive and critical review, npj Clean Water, 4 (2021) 36, doi: 10.1038/s41545-021-00127-0.
  2. R. Doll, L.G. Morgan, F.E. Speizer, Cancers of the lung and nasal sinuses in nickel workers, Br. J. Cancer, 24 (1970) 623–632.
  3. R. Doll, J.D. Mathews, L.G. Morgan, Cancers of the lung and nasal sinuses in nickel workers: a reassessment of the period of risk, Occup. Environ. Med., 34 (1977) 102–105.
  4. H.M. Shen, Q.F. Zhang, Risk assessment of nickel carcinogenicity and occupational lung cancer, Environ. Health Perspect., 102 (1994) 275–282.
  5. A. Katsnelson, Nickel allergy tracked to a single receptor, Nature, (2010), doi: 10.1038/news.2010.407.
  6. R.L. Prueitt, W. Li, Y.C. Chang, P. Boffetta, J.E. Goodman, Systematic review of the potential respiratory carcinogenicity of metallic nickel in humans, Crit. Rev. Toxicol., 50 (2020) 605–639.
  7. M. Elias, Nickel laterite deposits – geological overview, resources and exploitation, CODES Special Publication, 4 (2002) 205–220.
  8. S.-J. Barnes, P.C. Lightfoot, Economic Geology 100th Anniversary Society of Economic Geologist, 2005, pp. 179–213.
  9. V. Coman, B. Robotin, P. Ilea, Nickel recovery/removal from industrial wastes: a review, Resour. Conserv. Recycl., 73 (2013) 229–238.
  10. C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, T. Tavares, Biosorptive performance of an Escherichia coli biofilm supported on zeolite NaY for the removal of Cr(VI), Cd(II), Fe(III) and Ni(II), Chem. Eng. J., 152 (2009) 110–115.
  11. M. Hossein, N. Dalali, A. Karimi, K. Dastanra, Solid phase extraction of copper, nickel, and cobalt in water samples after extraction using surfactant coated alumina modified with indane-1,2,3-trione 1,2-dioxime and determination by flame atomic absorption spectrometry, Turk. J. Chem., 34 (2010) 805–814.
  12. V. Srivastava, C.H. Weng, V.K. Singh, Y.C. Sharma, Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies, J. Chem. Eng. Data, 56 (2011) 1414–1422.
  13. P.K. Pandey, S. Choubey, Y. Verma, M. Pandey, S.S. Kalyan Kamal, K. Chandrashekhar, Biosorptive removal of Ni(II) from wastewater and industrial effluent, Int. J. Environ. Res. Public Health, 4 (2007) 332–339.
  14. M.I. Kandah, J.L. Meunier, Removal of nickel ions from water by multi-walled carbon nanotubes, J. Hazard. Mater., 146 (2007) 283–288.
  15. C. Chen, J. Hu, D. Shao, J. Li, X. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II), J. Hazard. Mater., 164 (2009) 923–928.
  16. S.R. Popuri, Y. Vijaya, V.M. Boddu, K. Abburi, Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads, Bioresour. Technol., 100 (2009) 194–199.
  17. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol., 96 (2005) 1518–1521.
  18. H. Çelebi, G. Gök, O. Gök, Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel(II), and zinc(II) heavy metal ions, Sci. Rep., 10 (2020) 17570,
    doi: 10.1038/s41598-020-74553-4.
  19. M.N. Zafar, R. Nadeem, M.A. Hanif, Biosorption of nickel from protonated rice bran, J. Hazard. Mater., 143 (2007) 478–485.
  20. M. Stevens, B. Batlokwa, Removal of nickel(II) and cobalt(II) from wastewater using vinegar-treated eggshell waste biomass, J. Water Resour. Prot., 9 (2017) 931, doi: 10.4236/jwarp.2017.98062.
  21. D. Sivakumar, J. Nouri, T.M. Modhini, K. Deepalakshmi, Nickel removal from electroplating industry wastewater: a bamboo activated carbon, Global J. Environ. Sci. Manage., 4 (2018) 325–338.
  22. M.K. Öden, E.N. Karasakal, S. Çıldır, Nickel(II) removal from synthetic wastewater by adsorption using waste pea shell, Int. J. Environ. Trends (IJENT), 6 (2022) 10–20.
  23. M. Corral Bobadilla, R. Lostado Lorza, F. Somovilla Gomez, R. Escribano Garcia, Adsorptive of nickel in wastewater by olive stone waste: optimization through multi-response surface methodology using desirability functions, Water, 12 (2020) 1320, doi: 10.3390/w12051320.
  24. I. Timur, B.M. Filiz Senkal, N. Karaaslan, T. Bal, E. Cengiz, M. Yaman, Determination and removing of lead and nickel in water samples by solid phase extraction using a novel Remazol black B-sulfonamide polymeric resin, Curr. Anal. Chem., 7 (2011) 286–295.
  25. J.J. Jacob, R. Varalakshmi, S. Gargi, M.A. Jayasri, K. Suthindhiran, Removal of Cr(III) and Ni(II) from tannery effluent using calcium carbonate coated bacterial magnetosomes, npj Clean Water, 1 (2018) 1, doi: 10.1038/s41545-018-0001-2.
  26. I. Zinicovscaia, N. Yushin, D. Grozdov, K. Vergel, N. Popova, G. Artemiev, A. Safonov, Metal removal from nickel-containing effluents using mineral–organic hybrid adsorbent, Materials, 13 (2020) 4462, doi: 10.3390/ma13194462.
  27. Z. Rahman, Removal of Ni(II) ions from wastewater by raw and modified plant wastes as adsorbents: a review, Iran. J. Chem. Chem. Eng. (IJCCE), 41 (2022) 174–206.
  28. A.H. Mahvi, B. Heibati, A. Mesdaghinia, A.R. Yari, Fluoride adsorption by pumice from aqueous solutions, E-J. Chem., 9 (2012) 1843–1853.
  29. M.R. Samarghandi, M. Zarrabi, M.N. Sepehr, A. Amrane, G.H. Safari, S. Bashiri, Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies, Iran. J. Environ. Health Sci. Eng., 9 (2012) 1–10.
  30. S.M. Turp, Mn2+ and Cu2+ adsorption with a natural adsorbent: expanded perlite, Appl. Ecol. Environ. Res., 16 (2018) 5047–5057.
  31. U.A. Guler, M. Sarioglu, Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies, J. Environ. Health Sci. Eng., 12 (2014) 1–11.
  32. D. Turan, C. Kocahakimoğlu, E. Boyacı, S.C. Sofuoglu, A.E. Eroğlu, Chitosan-immobilized pumice for the removal of As(V) from waters, Water, Air, Soil Pollut., 225 (2014) 1–12.
  33. D. Öztürk, T. Şahan, Design and optimization of Cu(II) adsorption conditions from aqueous solutions by low-cost adsorbent pumice with response surface methodology, Pol. J. Environ. Stud., 24 (2015) 1749–1756.
  34. N. Babakhani, M. Reyahi-Khoram, S. Sobhanardakani, Kinetic study of heavy metal ions removal from aqueous solutions using activated pumice stone, Environ. Health Eng. Manage. J., 3 (2016) 47–53.
  35. D.İ. Çifçi, S. Meriç, A review on pumice for water and wastewater treatment, Desal. Water Treat., 57 (2016) 18131–18143.
  36. S. Indah, D. Helard, Evaluation of iron and manganesecoated pumice from Sungai Pasak, West Sumatera, Indonesia for the removal of Fe(II) and Mn(II) from aqueous solutions, Procedia Environ. Sci., 37 (2017) 556–563.
  37. V. Jonasi, K. Matina, U. Guyo, Removal of Pb(II) and Cd(II) from aqueous solution using alkaline-modified pumice stone powder (PSP): equilibrium, kinetic, and thermodynamic studies, Turk. J. Chem., 41 (2017) 748–759.
  38. A.R. Kul, V. Benek, A. Selçuk, N. Onursal, Using natural stone pumice in van region on adsorption of some textile dyes, J. Turk. Chem. Soc. Sect. A Chem., 4 (2017) 525–536.
  39. B.I. Harman, N.S. Ibrahim, Special Issue of the 7th International Advances in Applied Physics and Materials Science (APMAS 2017) 134/1, 2018, pp. 171–173.
  40. E. Çiçek, The characterization and modeling of cobalt ions adsorption on pumice, Eskisehir Tech. Univ. J. Sci. Technol. A-Appl. Sci. Eng., 22 (2021) 378–383.
  41. B. Tural, E. Ertas, M. Güzel, S. Tural, Effect of structural differences of pumice on synthesis of pumice-supported nFe0: removal of Cr(VI) from water, Appl. Water Sci., 11 (2021) 1–11.
  42. S. Alraddadi, H. Assaedi, Physical properties of mesoporous scoria and pumice volcanic rocks, J. Phys. Commun., 5 (2021) 115018, doi: 10.1088/2399-6528/ac3a95.
  43. A.I.M. Ismail, O.I. El-Shafey, M.H.A. Amr, M.S. El-Maghraby, Pumice characteristics and their utilization on the synthesis of mesoporous minerals and on the removal of heavy metals, Int. Scholarly Res. Notices, 2014 (2014) 259379, doi: 10.1155/2014/259379.
  44. S. Indah, D. Helard, B. Primasari, T. Edwin, R.H. Putra, Modification of natural pumice by physical and chemical treatments for removal of zinc ions from aqueous solution, MATEC Web Conf., 276 (2019) 06009, doi: 10.1051/matecconf/201927606009.
  45. M.H. Mahmoudian, A. Azari, A. Jahantigh, M. Sarkhosh, M. Yousefi, S.A. Razavinasab, M. Afsharizadeh, F.M. Shahraji, A.P. Pasandi, A. Zeidabadi, T.I. Bardsiri, M. Ghasemian, Statistical modeling and optimization of dexamethasone adsorption from aqueous solution by Fe3O4@NH2-MIL88B nanorods: isotherm, kinetics, and thermodynamic, Environ. Res., 236 (2023) 116773, doi: 10.1016/j.envres.2023.116773.
  46. E. Türkeş, Master Thesis, 2017. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=iU74sI4VycU6d43b7YCm_ A&no=OxievGZ-OuXt4Pqgqzm21w (Access Date: 4.11.2023).
  47. Ş.G. Özkan, G. Tuncer, 4th Industrial Raw Materials Symposium, 2001, pp. 18–19.
  48. M.A. Floriano, A.M. Venezia, G. Deganello, E.C. Svensson, J.H. Root, The structure of pumice by neutron diffraction, J. Appl. Crystallogr., 27 (1994) 271–277.
  49. D. Helard, S. Indah, C.M. Sari, H. Mariesta, The adsorption and regeneration of natural pumice as low-cost adsorbent for nitrate removal from water, J. Geosci. Eng. Environ. Technol., 3 (2018) 86.
  50. A.L. Bush, Construction Materials: Lightweight Aggregates, Encyclopedia of Materials: Science and Technology, 2001, pp. 1550–1558, doi: 10.1016/B0-08-043152-6/00277-1.
  51. M. Sumita, H.U. Schmincke, Impact of volcanism on the evolution of Lake Van I: evolution of explosive volcanism of Nemrut Volcano (Eastern Anatolia) during the past > 400,000 years, Bull. Volcanol., 75 (2013) 1–32.
  52. P.S. Liu, G.F. Chen, General Introduction to Porous Materials, in: Porous Materials, 2014, pp. 1–20.
  53. I.L. Botto, V. Barone, M.E. Canafoglia, E. Rovere, R. Violante, M.J. González, I.B. Schalamuk, Pyroclasts of the first phases of the explosive-effusive PCCVC volcanic eruption: physicochemical analysis, Adv. Mater. Phys. Chem., 5 (2015), doi: 10.4236/ampc.2015.58030.
  54. T. Liu, Z.L. Wang, X. Yan, B. Zhang, Removal of mercury(II) and chromium(VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron, Chem. Eng. J., 245 (2014) 34–40.
  55. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  56. H. Kayakökü, M. Doğru, Assessment of radioactivity and heavy metal contents in surface water samples from Van Lake, Turkey, Arabian J. Geosci., 14 (2021) 1093, doi: 10.1007/s12517-021-07397-5.
  57. D.İ. Çifçi, S.M. Pagano, Comparison of pumice-based adsorbents for lithium adsorption in synthetic aqueous, Fırat Univ. J. Eng. Sci., 33 (2021) 185–192.
  58. M.H. Dehghani, M. Sarmadi, M.R. Alipour, D. Sanaei, H. Abdolmaleki, S. Agarwal, V.K. Gupta, Investigating the equilibrium and adsorption kinetics for the removal of Ni(II) ions from aqueous solutions using adsorbents prepared from the modified waste newspapers: a low-cost and available adsorbent, Microchem. J., 146 (2019) 1043–1053.
  59. S. Maleki, A. Karimi-Jashni, Effect of ball milling process on the structure of local clay and its adsorption performance for Ni(II) removal, Appl. Clay Sci., 137 (2017) 213–224.
  60. E. Malkoc, Y. Nuhoglu, Removal of Ni(II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column, J. Hazard. Mater., 135 (2006) 328–336.
  61. S. Malamis, E. Katsou, A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms, J. Hazard. Mater., 252 (2013) 428–461.
  62. F.E. Erkurt, B. Balcı, Investigation of adsorption of Reactive Black 5 dye onto activated carbon by using kinetic and adsorption models, Çukurova University, J. Fac. Eng. Archit., 30 (2015) 257–270.
  63. E. Koohzad, D. Jafari, H. Esmaeili, Adsorption of lead and arsenic ions from aqueous solution by activated carbon prepared from tamarix leaves, Chem. Select, 4 (2019) 12356–12367.
  64. A. Çiçekçi, B. Dönmez, E. Kavcı, Ö. Laçin, Adsorption isotherms and thermodynamics on peach kernel peel of malahit green, Sinop Univ. J. Nat. Sci., 5 (2020) 103–111.
  65. D.S. Qais, M.N. Islam, M.H.D. Othman, H.E. Mahmud, M.E. Quayum, M.A. Islam, A. Habib, Nano-zinc oxide fibers: synthesis, characterization, adsorption of Acid Blue 92 dye, isotherms, thermodynamics and kinetics, Emerg. Contam., 9 (2023) 100224, doi: 10.1016/j.emcon.2023.100224.
  66. S.Y. Hashemi, A. Azari, M. Raeesi, K. Yaghmaeian, Application of response surface methodology (RSM) in optimisation of fluoride removal by magnetic chitosan/graphene oxide composite: kinetics and isotherm study, Int. J. Environ. Anal. Chem., 103 (2023) 5368–5386.
  67. M. Yeganeh, A. Azari, H.R. Sobhi, M. Farzadkia, A. Esrafili, M. Gholami, A comprehensive systematic review and metaanalysis on the extraction of pesticide by various solid phase-based separation methods: a case study of malathion, Int. J. Environ. Anal. Chem., 103 (2023) 1068–1085.
  68. V.C. Srivastava, I.D. Mall, I.M. Mishra, Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash, Chem. Eng. Process. Process Intensif., 48 (2009) 370–379.
  69. D.C. Ong, S.M.B. Pingul-Ong, C.C. Kan, M.D.G. de Luna, Removal of nickel ions from aqueous solutions by manganese dioxide derived from groundwater treatment sludge, J. Cleaner Prod., 190 (2018) 443–451.
  70. H. Liu, X. Wang, G. Zhai, J. Zhang, C. Zhang, N. Bao, C. Cheng, Preparation of activated carbon from lotus stalks with the mixture of phosphoric acid and pentaerythritol impregnation and its application for Ni(II) sorption, Chem. Eng. J., 209 (2012) 155–162.
  71. M.M. Akafia, T.J. Reich, C.M. Koretsky, Assessing Cd, Co, Cu, Ni, and Pb sorption on montmorillonite using surface complexation models, Appl. Geochem., 26 (2011) S154–S157.
  72. M. Irannajad, H.K. Haghighi, Removal of Co2+, Ni2+, and Pb2+ by manganese oxide-coated zeolite: equilibrium, thermodynamics, and kinetics studies, Clays Clay Miner., 65 (2017) 52–62.
  73. D. Hao, Y.X. Song, Y. Zhang, H.T. Fan, Nanocomposites of reduced graphene oxide with pure monoclinic-ZrO2 and pure tetragonal-ZrO2 for selective adsorptive removal of oxytetracycline, Appl. Surf. Sci., 543 (2021) 148810, doi: 10.1016/j.apsusc.2020.148810.
  74. L. He, B.B. Wang, D.D. Liu, K.S. Qian, H.B. Xu, Poly(ethyleneimine) functionalized organic-inorganic hybrid silica by hydrothermal assisted surface grafting method for removal of nickel(II), Korean J. Chem. Eng., 31 (2014) 343–349.