References

  1. D. Polak, M. Szwast, Analysis of the influence of process parameters on the properties of homogeneous and heterogeneous membranes for gas separation, Membranes, 12 (2022) 1016, doi: 10.3390/membranes12101016.
  2. A. Iulianelli, E. Drioli, Membrane engineering: latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications, Fuel Process. Technol., 206 (2020) 106464, doi: 10.1016/j.fuproc.2020.106464.
  3. H. Jin, L. Pei, L. Zheng, Energy-efficient process intensification for post-combustion CO2 capture: a modeling approach, Energy, 158 (2018) 471–483.
  4. X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, Membrane gas separation technologies for biogas upgrading, RSC Adv., 5 (2015) 24399–24448.
  5. Z.Y. Yeo, T.L. Chew, P.W. Zhu, A.R. Mohamed, S.-P. Chai, Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review, J. Nat. Gas Chem., 21 (2012) 282–298.
  6. Y. Han, W.S. Winston Ho, Polymeric membranes for CO2 separation and capture, J. Membr. Sci., 628 (2021) 119244, doi: 10.1016/j.memsci.2021.119244.
  7. K. Nocoń-Szmajda, A. Wolińska-Grabczyk, A. Jankowski, U. Szeluga, M. Wójtowicz, J. Konieczkowska, A. Hercog, Gas transport properties of mixed matrix membranes based on thermally rearranged poly(hydroxyimide)s filled with inorganic porous particles, Sep. Purif. Technol., 242 (2020) 116778, doi: 10.1016/j.seppur.2020.116778.
  8. H. Shamsipur, B.A. Dawood, P.M. Budd, P. Bernardo, G. Clarizia, J.C. Jansen, Thermally rearrangeable
    PIM-polyimides for gas separation membranes, Macromolecules, 47 (2014) 5595–5606.
  9. Y. Wang, B.S. Ghanem, Y. Han, I. Pinnau, State-of-the-art polymers of intrinsic microporosity for
    high-performance gas separation membranes, Curr. Opin. Chem. Eng., 35 (2022) 100755, doi: 10.1016/j.coche.2021.100755.
  10. N.E. León, Z. Liu, M. Irani, W.J. Koros, How to get the best gas separation membranes from state-of-the-art glassy polymers, Macromolecules, 55 (2022) 1457–1473.
  11. G. Dong, H. Li, V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A, 1 (2013) 4610–4630.
  12. D. Polak, M. Szwast, Material and process tests of heterogeneous membranes containing ZIF-8, SiO2 and
    POSS-Ph, Materials, 15 (2022) 6455, doi: 10.3390/ma15186455.
  13. M.M.H. Shah Buddin, A.L. Ahmad, A review on metal-organic frameworks as filler in mixed matrix membrane: recent strategies to surpass upper bound for CO2 separation, J. CO2 Util., 51 (2021) 101616, doi: 10.1016/j.jcou.2021.101616.
  14. D. Polak, J. Sułkowska, M. Szwast, The influence of surfactant Pluronic P123 addition on the mixed matrix membrane PEBAX® 2533 – ZIF-8 separation properties, Desal. Water Treat., 214 (2021) 64–73.
  15. X. Chen, L.F. Dumée, Polyhedral oligomeric silsesquioxane (POSS) nano-composite separation membranes − a review, Adv. Eng. Mater., 21 (2019) 1800667, doi: 10.1002/adem.201800667.
  16. L. Yang, Z. Tian, X. Zhang, X. Wu, Y. Wu, Y. Wang, D. Peng, S. Wang, H. Wu, Z. Jiang, Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane, J. Membr. Sci., 543 (2017) 69–78.
  17. D. Zhao, J. Ren, H. Li, X. Li, M. Deng, Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multiwalled carbon nanotubes mixed matrix membranes, J. Membr. Sci., 467 (2014) 41–47.
  18. E.A. Feijani, A. Tavassoli, H. Mahdavi, H. Molavi, Effective gas separation through graphene oxide containing mixed matrix membranes, J. Appl. Polym. Sci., 135 (2018) 46271, doi: 10.1002/app.46271.
  19. L. Liu, C. Amit, X. Feng, CO2/N2 separation by poly(ether block amide) thin film hollow fiber composite membranes, Ind. Eng. Chem. Res., 44 (2005) 6874–6882.
  20. H.Z. Chen, Z. Thong, P. Li, T.-S. Chung, High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation, Int. J. Hydrogen Energy, 39 (2014) 5043–5053.
  21. M. Teramoto, N. Ohnishi, N. Takeuchi, S. Kitada, H. Matsuyama, N. Matsumiya, H. Mano, Separation and enrichment of carbon dioxide by capillary membrane module with permeation of carrier solution, Sep. Purif. Technol., 30 (2003) 215–227.
  22. S.S. Shojaie, B.K. William, A.R. Greenberg, Dense polymer film and membrane formation via the dry-cast process Part I. Model development, J. Membr. Sci., 94 (1994) 255–280.
  23. M. Cavazzuti, Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics, Springer Science & Business, Springer-Verlag Berlin Heidelberg, 2012, pp. 13–42.
  24. M. Rabiej, Analizy statystyczne z programami Statistica i Excel, Helion, Gliwice, 2018.
  25. Ž.R. Lazić, Design of Experiments in Chemical Engineering: A Practical Guide, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006.
  26. F.M. Elfghi, A hybrid statistical approach for modeling and optimization of RON: a comparative study and combined application of response surface methodology (RSM) and artificial neural network (ANN) based on design of experiment (DoE), Chem. Eng. Res. Des., 113 (2016) 264–272.
  27. T. Visser, G.H. Koops, M. Wessling, On the subtle balance between competitive sorption and plasticization effects in asymmetric hollow fiber gas separation membranes, J. Membr. Sci., 252 (2005) 265–277.
  28. O.C. David, D. Gorri, A. Urtiaga, I. Ortiz, Mixed gas separation study for the hydrogen recovery from
    H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane, J. Membr. Sci., 378 (2011) 359–368.