References

  1. A. Pal, Y. He, M. Jekel, M. Reinhard, K. Yew-Hoong Gin, Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle, Environ. Int., 71 (2014) 46–62.
  2. B. Halling-Sørensen, S. Nors Nielsen, P.F. Lanzky, F. Ingerslev, H.C. Holten Lützhøft, S.E. Jørgensen, Occurrence, fate and effects of pharmaceutical substances in the environment - a review, Chemosphere, 36 (1998) 357–393.
  3. J.L. Martinez, Environmental pollution by antibiotics and by antibiotic resistance determinants, Environ. Pollut., 157 (2009) 2893–2902.
  4. K.M.S. Ana, J. Madriaga, M.P. Espino, β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: an overview of contamination, sources and detection methods, Environ. Pollut., 275 (2021) 116624, doi: 10.1016/j.envpol.2021.116624.
  5. S. Moles, S. Gozzo, M.P. Ormad, R. Mosteo, J. Gómez, F. Laborda, J. Szpunar, Long-term study of antibiotic presence in Ebro River basin (Spain): identification of the emission sources, Water, 14 (2022) 1033, doi: 10.3390/w14071033.
  6. L.A Dagher, J. Hassan, S. Kharroubi, H. Jaafar, I.I. Kassem, Nationwide assessment of water quality in rivers across Lebanon by quantifying fecal indicators densities and profiling antibiotic resistance of Escherichia coli, Antibiotics, 10 (2021) 883, doi: 10.3390/antibiotics10070883.
  7. F.R.B. Twinomucunguzi, P.M. Nyenje, S. Semiyaga, P. Kebirungi, R.N. Kulabako, F. Kansiime, Antibiotics in shallow groundwater underlying urban informal settlements in developing countries: influence of on-site sanitation practices and risk assessment, Urban Water J., 20 (2023) 1731–1743.
  8. E. Sanganyado, G. Willis, Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks, Sci. Total Environ., 669 (2019) 785–797.
  9. K.P.M. Licona, L.R. de O. Geaquinto, J.V. Nicolini, N.G. Figueiredo, S.C. Chiapetta, A.C. Habert, L. Yokoyama, Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water, J. Water Process Eng., 25 (2018) 195–204.
  10. M.A. Zazouli, H. Susanto, S. Nasseri, M. Ulbricht, Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration, Water Res., 43 (2009) 3270–3280.
  11. F. Javier Benitez, J.L. Acero, F.J. Real, G. Roldán, E. Rodriguez, Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water, J. Chem. Technol. Biotechnol., 86 (2011) 858–866.
  12. A.M. Urtiaga, G. Pérez, R. Ibáñez, I. Ortiz, Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate, Desalination, 331 (2013) 26–34.
  13. K. Ikehata, N.J. Naghashkar, M.G. El-Din, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review, Ozone: Sci. Eng., 28 (2006) 353–414.
  14. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, J. Environ. Manage., 219 (2018) 189–207.
  15. C. Zwiener, F.H. Frimmel, Oxidative treatment of pharmaceuticals in water, Water Res., 34 (2000) 1881–1885.
  16. P.K. Pandis, C. Kalogirou, E. Kanellou, C. Vaitsis, M.G. Savvidou, G. Sourkouni, A.A. Zorpas, C. Argirusis, Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: a mini review, ChemEng, 6 (2022) 8, doi: 10.3390/chemengineering6010008.
  17. N. Delgado, A. Capparelli, A. Navarro, D. Marino, Pharmaceutical emerging pollutants removal from water using powdered activated carbon: study of kinetics and adsorption equilibrium, J. Environ. Manage., 236 (2019) 301–308.
  18. S. Álvarez-Torrellas, J.A. Peres, V. Gil-Álvarez, G. Ovejero, J. García, Effective adsorption of non-biodegradable pharmaceuticals from hospital wastewater with different carbon materials, Chem. Eng. J., 320 (2017) 319–329.
  19. M. Zhang, J. Shen, Y. Zhong, T. Ding, P.D. Dissanayake, Y. Yang, Y.F. Tsang, Y.S. Ok, Sorption of pharmaceuticals and personal care products (PPCPs) from water and wastewater by carbonaceous materials: a review, Crit. Rev. Env. Sci. Technol., 52 (2022) 727–766.
  20. T.-H. Le, C. Ng, N.H. Tran, H. Chen, K. Yew-Hoong Gin, Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems, Water Res., 145 (2018) 498–508.
  21. A. Seid-Mohammadi, G. Asgarai, Z. Ghorbanian, A. Dargahi, The removal of cephalexin antibiotic in aqueous solutions by ultrasonic waves/hydrogen peroxide/nickel oxide nanoparticles (US/H2O2/NiO) hybrid process, Sep. Sci. Technol., 55 (2020) 1558–1568.
  22. S. Wohlmuth da Silva, A.N.A. Heberle, A.P. Santos, M.A.S. Rodrigues, V. Pérez-Herranz, A.M. Bernardes, Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect, Environ. Technol., 40 (2019) 3456–3466.
  23. D. Polak, I. Zielińska, M. Szwast, I. Kogut, A. Małolepszy, Modification of ceramic membranes with carbon compounds for pharmaceutical substances removal from water in a filtration—adsorption system, Membranes, 11 (2021) 481, doi: 10.3390/membranes11070481.
  24. S.O. Ganiyu, E.D. van Hullebusch, M. Cretin, G. Esposito, M.A. Oturan, Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review, Sep. Purif. Technol., 156 (2015) 891–914.
  25. I. Kogut, F. Armbruster, D. Polak, S. Kaur, S. Hussy, T. Thiem, A. Gerhardts, M. Szwast, Antibacterial, antifungal, and antibiotic adsorption properties of graphene-modified nonwoven materials for application in wastewater treatment plants, Processes, 10 (2022) 2051, doi: 10.3390/pr10102051.
  26. D. Polak, I. Tonecka, W. Fabianowski, M. Szwast, Development of graphene oxide-coated membranes to support the process of removing pharmacological agents from water, Desal. Water Treat., 214 (2021) 49–55.
  27. L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets, Chem. Eng. J., 248 (2014) 191–199.
  28. M. Stor, K. Czelej, A. Krasiński, L. Gradoń, Exceptional sorption of heavy metals from natural water by halloysite particles: a new prospect of highly efficient water remediation, Nanomaterials, 13 (2023) 1162, doi: 10.3390/nano13071162.
  29. E. Nyankson, R.V. Kumar, Removal of water-soluble dyes and pharmaceutical wastes by combining the photocatalytic properties of Ag3PO4 with the adsorption properties of halloysite nanotubes, Mater. Today Adv., 4 (2019) 100025, doi: 10.1016/j.mtadv.2019.100025.
  30. I. Zielińska, D. Polak, M. Szwast, Analysis of the adsorption of selected pharmaceuticals on a composite material PEBAX/GO, J. Water Process Eng., 44 (2021) 102272, doi: 10.1016/j.jwpe.2021.102272.
  31. M.J.F. Calvete, G. Piccirillo, C.S. Vinagreiro, M.M. Pereira, Hybrid materials for heterogeneous photocatalytic degradation of antibiotics, Coord. Chem. Rev., 395 (2019) 63–85.
  32. T. Velempini, E. Prabakaran, K. Pillay, Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—a review, Mater. Today Chem., 19 (2021) 100380, doi: 10.1016/j.mtchem.2020.100380.
  33. S.K. Fanourakis, J. Peña-Bahamonde, P.C. Bandara, D.F. Rodrigues, Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse, npj Clean Water, 3 (2020) 1, doi: 10.1038/s41545-019-0048-8.
  34. R. Liu, Y. Guan, L. Chen, B. Lian, Adsorption and desorption characteristics of Cd2+ and Pb2+ by micro and nano-sized biogenic CaCO3, Front. Microbiol., 9 (2018) 41, doi: 10.3389/fmicb.2018.00041.
  35. M. Fathy, M.A. Zayed, Y.M. Moustafa, Synthesis and applications of CaCO3/HPC core–shell composite subject to heavy metals adsorption processes, Heliyon, 5 (2019) e02215, doi: 10.1016/j.heliyon.2019.e02215.
  36. X. Ma, L. Li, L. Yang, C. Su, K. Wang, S. Yuan, J. Zhou, Adsorption of heavy metal ions using hierarchical CaCO3–maltose meso/macroporous hybrid materials: adsorption isotherms and kinetic studies, J. Hazard. Mater., 209 (2012) 467–477.
  37. D. Jahani, A. Nazari, J. Ghourbanpour, A. Ameli, Polyvinyl alcohol/calcium carbonate nanocomposites as efficient and cost-effective cationic dye adsorbents, Polymers, 12 (2020) 2179, doi: 10.3390/polym12102179.
  38. S.F. Hassan, S. Kamireddy, M.P. Yutkin, C.J. Radke, T.W. Patzek, Adsorption of charged surfactants onto calcium carbonate, IOR 2019–20th European Symposium on Improved Oil Recovery, 1 (2019) 1–19.
  39. K.-U. Goss, R.P. Schwarzenbach, Adsorption of a diverse set of organic vapors on quartz, CaCO3, and α-Al2O3 at different relative humidities, J. Colloid Interface Sci., 252 (2002) 31–41.
  40. J. Plank, G. Bassioni, Adsorption of carboxylate anions on a CaCO3 surface, Zeitschrift für Naturforschung B, 62 (2007) 1277–1284.
  41. J.H. Lew, O.K. Matar, E.A. Müller, M.T.M. Maung, P.F. Luckham, Adsorption of hydrolysed polyacrylamide onto calcium carbonate, Polymers, 14 (2022) 405, doi: 10.3390/polym14030405.
  42. B.J. Chun, S.G. Lee, J.I. Choi, S.S. Jang, Adsorption of carboxylate on calcium carbonate (1014) surface: molecular simulation approach, Colloids Surf., A, 474 (2015) 9–17.
  43. L. Zhou, T. Peng, H. Sun, X. Guo, D. Fu, The characterization and amoxicillin adsorption activity of mesopore CaCO3 microparticles prepared using rape flower pollen, Minerals, 9 (2019) 254, doi: 10.3390/min9040254.
  44. M. Ramakrishna, S. Valiyaveettil, Co-precipitation with calcium carbonate – a fast and nontoxic method for removal of nanopollutants from water?, RSC Adv., 5 (2015) 11023–11028.
  45. R.B.S.M.N. Mydin, I.N.M. Zahidi, N.N. Ishak, N.S.S.N. Ghazali, S. Moshawih, S. Siddiquee, Potential of calcium carbonate nanoparticles for therapeutic applications, Malays. J. Med. Health Sci., 14 (2018) 201–206.
  46. M. Szwast, D. Polak, W. Arciszewska, I. Zielińska, Novel PVDFPEG-CaCO3 membranes to achieve the objectives of the water circular economy by removing pharmaceuticals from the aquatic environment, Membranes, 13 (2023) 44, doi: 10.3390/membranes13010044.
  47. K. Kędra-Królik, P. Gierycz, J.J. Bucki, Controlled precipitation of CaCO3 sub-micro crystals of well-defined structure in a multiphase system, Arch. Metall. Mater., 51 (2006) 635–639.
  48. X. Peng, J. Cao, B. Xie, M. Duan, J. Zhao, Evaluation of degradation behavior over tetracycline hydrochloride by microbial electrochemical technology: performance, kinetics, and microbial communities, Ecotoxicol. Environ. Saf., 188 (2020) 109869, doi: 10.1016/j.ecoenv.2019.109869.
  49. H. Park, Y.-K. Choung, Degradation of antibiotics (tetracycline, sulfathiazole, ampicillin) using enzymes of glutathion S-transferase, Hum. Ecol. Risk Assess.: Int. J., 13 (2007) 1147–1155.
  50. F. Wei, Q. Ren, H. Zhang, L. Yang, H. Chen, Z. Liang, D. Chen, Removal of tetracycline hydrochloride from wastewater by Zr/Fe-MOFs/GO composites, RSC Adv., 11 (2021) 9977–9984.
  51. M. Conde-Cid, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, D. Fernández-Calviño, M. Arias-Estévez, Tetracycline and sulfonamide antibiotics in soils: presence, fate and environmental risks, Processes, 8 (2020) 1479, doi: 10.3390/pr8111479.
  52. S. Hu, Y. Zhang, G. Shen, H. Zhang, Z. Yuan, W. Zhang, Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems, Soil Tillage Res., 186 (2019) 233–241.
  53. S.T. Kurwadkar, C.D. Adams, M.T. Meyer, D.W. Kolpin, Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils, J. Agric. Food Chem., 55 (2007) 1370–1376.
  54. A.B.A. Boxall, P. Blackwell, R. Cavallo, P. Kay, J. Tolls, The sorption and transport of a sulphonamide antibiotic in soil systems, Toxicol. Lett., 131 (2002) 19–28.
  55. L. Zhang, Y. Wang, S.W. Jin, Q.Z. Lu, J. Ji, Adsorption isotherm, kinetic and mechanism of expanded graphite for sulfadiazine antibiotics removal from aqueous solutions, Environ. Technol., 38 (2017) 2629–2638.
  56. L. Ji, W. Chen, J. Bi, S. Zheng, Z. Xu, D. Zhu, P.J. Alvarez, Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry, Environ. Toxicol. Chem., 29 (2010) 2713–2719.
  57. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  58. G. Ersan, O.G. Apul, F. Perreault, T. Karanfil, Adsorption of organic contaminants by graphene nanosheets: a review, Water Res., 126 (2017) 385–398.
  59. M.H. Derkani, A.J. Fletcher, M. Fedorov, W. Abdallah, B. Sauerer, J. Anderson, Z.J. Zhang, Mechanisms of surface charge modification of carbonates in aqueous electrolyte solutions, Colloids Interfaces, 3 (2019) 62, doi: 10.3390/colloids3040062.
  60. M.O. Schmitt, S. Schneider, Spectroscopic investigation of complexation between various tetracyclines and Mg2+ or Ca2+, PhysChemComm, 3 (2000) 42–55.
  61. E.J. Ozumchelouei, A.H. Hamidian, Y. Zhang, M. Yang, Physicochemical properties of antibiotics: a review with an emphasis on detection in the aquatic environment, Water Environ. Res., 92 (2020) 177–188.
  62. S. Liu, W.-H. Xu, Y.-G. Liu, X.-F. Tan, G.-M. Zeng, X. Li, J. Liang, Z. Zhou, Z.-L. Yan, X.-X. Cai, Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water, Sci. Total Environ., 592 (2017) 546–553.
  63. S. Paria, K.C. Khilar, A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface, Adv. Colloid Interface Sci., 110 (2004) 75–95.