References

  1. F. Charlson, S. Ali, J. Augustinavicius, T. Benmarhnia, S. Birch, S. Clayton, K. Fielding, L. Jones, D. Juma, L. Snider, V. Ugo, L. Zeitz, D. Jayawardana, A. La Nauze, A. Massazza, Global priorities for climate change and mental health research, Environ. Int., 158 (2022) 106984, doi: 10.1016/j.envint.2021.106984.
  2. J. Eke, A. Yusuf, A. Giwa, A. Sodiq, The global status of desalination: an assessment of current desalination technologies, plants and capacity, Desalination, 495 (2020) 114633, doi: 10.1016/j.desal.2020.114633.
  3. A. Kozielec, Wykorzystanie energii odnawialnej w procesie odsalania wody na przykładzie Rady Współpracy Państw Zatoki Perskiej: możliwości i wyzwania, Pr. Nauk. Uniw. Ekon. We Wrocławiu, 527 (2018) 160–170.
  4. A. Zapata-Sierra, M. Cascajares, A. Alcayde, F. Manzano- Agugliaro, Worldwide research trends on desalination, Desalination, 519 (2021) 115305, doi: 10.1016/j.desal.2021.115305.
  5. A. Gómez-Gotor, B. Del Río-Gamero, I. Prieto Prado, A. Casañas, The history of desalination in the Canary Islands, Desalination, 428 (2018) 86–107.
  6. N.A. Ahmad, P.S. Goh, L.T. Yogarathinam, A.K. Zulhairun, A.F. Ismail, Current advances in membrane technologies for produced water desalination, Desalination, 493 (2020) 114643, doi: 10.1016/j.desal.2020.114643.
  7. S. Aly, H. Manzoor, S. Simson, A. Abotaleb, J. Lawler, A.N. Mabrouk, Pilot testing of a novel multi effect distillation (MED) technology for seawater desalination, Desalination, 519 (2021) 115221, doi: 10.1016/j.desal.2021.115221.
  8. C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-theart of reverse osmosis desalination, Desalination, 216 (2007) 1–76.
  9. S.F. Anis, R. Hashaikeh, N. Hilal, Reverse osmosis pretreatment technologies and future trends: a comprehensive review, Desalination, 452 (2019) 159–195.
  10. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: Water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  11. X. Zhang, J. Jiang, F. Yuan, W. Song, J. Li, D. Xing, L. Zhao, W. Dong, X. Pan, X. Gao, Estimation of water footprint in seawater desalination with reverse osmosis process, Environ. Res., 204 (2022) 112374, doi: 10.1016/j.envres.2021.112374.
  12. Y. Li, E.R. Thomas, M.H. Molina, S. Mann, W. Shane Walker, M.L. Lind, F. Perreault, Desalination by membrane pervaporation: a review, Desalination, 547 (2023) 116223, doi: 10.1016/j.desal.2022.116223.
  13. X. Cheng, F. Pan, M. Wang, W. Li, Y. Song, G. Liu, H. Yang, B. Gao, H. Wu, Z. Jiang, Hybrid membranes for pervaporation separations, J. Membr. Sci., 541 (2017) 329–346.
  14. A. Darmawan, L. Munzakka, L. Karlina, R.E. Saputra, S. Sriatun, Y. Astuti, A.S. Wahyuni, Pervaporation membrane for desalination derived from tetraethylorthosilicatemethyltriethoxysilane, J. Sol-Gel Sci. Technol., 101 (2022) 505–518.
  15. G. Liu, W. Jin, Pervaporation membrane materials: recent trends and perspectives, J. Membr. Sci., 636 (2021) 119557, doi: 10.1016/j.memsci.2021.119557.
  16. Y. Song, F. Pan, Y. Li, K. Quan, Z. Jiang, Mass transport mechanisms within pervaporation membranes, Front. Chem. Sci. Eng., 13 (2019) 458–474.
  17. L.M. Vane, Review of pervaporation and vapor permeation process factors affecting the removal of water from industrial solvents, J. Chem. Technol. Biotechnol., 95 (2020) 495–512.
  18. Q. Wang, N. Li, B. Bolto, M. Hoang, Z. Xie, Desalination by pervaporation: a review, Desalination, 387 (2016) 46–60.
  19. X. He, T. Wang, J. Huang, J. Chen, J. Li, Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation, Sep. Purif. Technol., 241 (2020) 116675, doi: 10.1016/j.seppur.2020.116675.
  20. M.S. Jyothi, K. Raghava Reddy, K. Soontarapa, S. Naveen, A.V. Raghu, R.V. Kulkarni, D.P. Suhas, N.P. Shetti, M.N. Nadagouda, T.M. Aminabhavi, Membranes for dehydration of alcohols via pervaporation, J. Environ. Manage., 242 (2019) 415–429.
  21. B. Liang, K. Pan, L. Li, E.P. Giannelis, B. Cao, High performance hydrophilic pervaporation composite membranes for water desalination, Desalination, 347 (2014) 199–206.
  22. B. Liang, Q. Li, B. Cao, P. Li, Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes, Desalination, 433 (2018) 132–140.
  23. J. Meng, P. Li, B. Cao, High-flux direct-contact pervaporation membranes for desalination, ACS Appl. Mater. Interfaces, 11 (2019) 28461–28468.
  24. W. Yave, The improved pervaporation PERVAP membranes, Filtr. Sep., 54 (2017) 14–15.
  25. W. Yave, A. Car, S.S. Funari, S.P. Nunes, K.-V. Peinemann, CO2-philic polymer membrane with extremely high separation performance, Macromolecules, 43 (2010) 326–333.
  26. J. Marszałek, M. Tylman, P. Rdzanek, W. Kaminski, The influence of hydrodynamic conditions on the recovery of acetone, butanol and ethanol in pervaporation membrane modules, Chem. Process Eng., (2018) 155–163.
  27. B. Tomaszewska, Pilotowa instalacja odsalania wód geotermalnych w Polsce, p. 10.
  28. B. Tomaszewska, Pozyskanie wód przeznaczonych do spożycia oraz cieczy i substancji balneologicznych w procesie uzdatniania wód geotermalnych, Kraków: Wydawnictwo IGSMiE PAN, 2018.
  29. M. Ptak, A. Choiński, M. Sojka, S. Zhu, Changes in the water resources of selected lakes in Poland in the period 1916–2020 as information to increase their availability, Sustainability, 13 (2021) 7298,
    doi: 10.3390/su13137298.
  30. W. Górecki, A. Sowiżdżał, M. Hajto, A. Wachowicz-Pyzik, Atlases of geothermal waters and energy resources in Poland, Environ. Earth Sci., 74 (2015) 7487–7495.
  31. T. Maćkowski, A. Sowiżdżał, A. Wachowicz-Pyzik, Seismic methods in geothermal water resource exploration: case study from Łódź Trough, Central Part of Poland, Geofluids, 2019 (2019) 3052806, doi: 10.1155/2019/3052806.
  32. A. Sowiżdżał, W. Górecki, M. Hajto, Geological conditions of geothermal resources occurrence in Poland, Geol. Q., (2020), doi: 10.7306/GQ.1526.
  33. Y. Baek, C. Kim, D.K. Seo, T. Kim, J.S. Lee, Y.H. Kim, K.H. Ahn, S.S. Bae, S.C. Lee, J. Lim, K. Lee, J. Yoon, High performance and antifouling vertically aligned carbon nanotube membrane for water purification, J. Membr. Sci., 460 (2014) 171–177.
  34. L. Fortunato, A.H. Alshahri, A.S.F. Farinha, I. Zakzouk, S. Jeong, T. Leiknes, Fouling investigation of a full-scale seawater reverse osmosis desalination (SWRO) plant on the Red Sea: membrane autopsy and pretreatment efficiency, Desalination, 496 (2020) 114536, doi: 10.1016/j.desal.2020.114536.
  35. W. Gao, H. Liang, J. Ma, M. Han, Z.-l. Chen, Z.-s. Han, G.-b. Li, Membrane fouling control in ultrafiltration technology for drinking water production: a review, Desalination, 272 (2011) 1–8.
  36. S. Yang, S. Abdalkareem Jasim, D. Bokov, S. Chupradit, A.T. Nakhjiri, A.S. El-Shafay, Membrane distillation technology for molecular separation: a review on the fouling, wetting and transport phenomena, J. Mol. Liq., 349 (2021) 118115, doi: 10.1016/j.molliq.2021.118115.
  37. W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling, Bioresour. Technol., 122 (2012) 27–34.
  38. Y.-G. Lee, S. Kim, J. Shin, H. Rho, Y. Lee, Y.M. Kim, Y. Park, S.-E. Oh, J. Cho, K. Chon, Fouling behavior of marine organic matter in reverse osmosis membranes of a real-scale seawater desalination plant in South Korea, Desalination, 485 (2020) 114305, doi: 10.1016/j.desal.2019.114305.
  39. Y.C. Woo, J.J. Lee, L.D. Tijing, H.K. Shon, M. Yao, H.-S. Kim, Characteristics of membrane fouling by consecutive chemical cleaning in pressurized ultrafiltration as pre-treatment of seawater desalination, Desalination, 369 (2015) 51–61.
  40. D. Zhao, J. Song, J. Xu, S. Yu, J. Liu, Y. Zhu, Z. Gu, G. Liu, Behaviours and mechanisms of nanofiltration membrane fouling by anionic polyacrylamide with different molecular weights in brackish wastewater desalination, Desalination, 468 (2019) 114058, doi: 10.1016/j.desal.2019.06.024.
  41. Y. Lin, T.B. Kouznetsova, S.L. Craig, Mechanically gated degradable polymers, J. Am. Chem. Soc., 142 (2020) 2105–2109.
  42. M. Rutkowska, A. Heimowska, Degradation of naturally occurring polymeric materials in sea water environment, Polimery, 53 (2008) 854–864.
  43. R. Scaffaro, A. Maio, F. Sutera, E. Gulino, M. Morreale, Degradation and recycling of films based on biodegradable polymers: a short review, Polymers, 11 (2019) 651, doi: 10.3390/polym11040651.
  44. B. Yang, Y. Yang, Z. Huo, Y. Yu, Advances in research on aging properties of polyvinyl chloride and polyvinylidene fluoride membranes, Constr. Build. Mater., 367 (2023) 130292, doi: 10.1016/j.conbuildmat.2023.130292.
  45. F. Khalid, A.S. Roy, A. Parveen, R. Castro-Muñoz, Fabrication of the cross-linked PVA/TiO2/C nanocomposite membrane for alkaline direct methanol fuel cells, Mater. Sci. Eng., B, 299 (2024) 116929, doi: 10.1016/j.mseb.2023.116929.
  46. C.-C. Yang, Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC, J. Membr. Sci., 288 (2007) 51–60.
  47. woda morska, Encyklopedia PWN: źródło wiarygodnej i rzetelnej wiedzy (Accessed: Nov. 19, 2023). Available at https:// encyklopedia.pwn.pl/haslo/woda-morska;3997253.html
  48. D.O. Shaltami, Chemical composition of seawater.
  49. F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale, Deep Sea Res. Part I, 55 (2008) 50–72.
  50. Regulation of the Minister of Health of 7 December 2017 on the Quality of Water Intended for Human Consumption, Journal of Laws of 2017, Item 2294 (in Polish).