References
- F. Charlson, S. Ali, J. Augustinavicius, T. Benmarhnia, S. Birch,
S. Clayton, K. Fielding, L. Jones, D. Juma, L. Snider, V. Ugo,
L. Zeitz, D. Jayawardana, A. La Nauze, A. Massazza, Global
priorities for climate change and mental health research, Environ.
Int., 158 (2022) 106984, doi: 10.1016/j.envint.2021.106984.
- J. Eke, A. Yusuf, A. Giwa, A. Sodiq, The global status
of desalination: an assessment of current desalination
technologies, plants and capacity, Desalination, 495 (2020)
114633, doi: 10.1016/j.desal.2020.114633.
- A. Kozielec, Wykorzystanie energii odnawialnej w procesie
odsalania wody na przykładzie Rady Współpracy Państw
Zatoki Perskiej: możliwości i wyzwania, Pr. Nauk. Uniw. Ekon.
We Wrocławiu, 527 (2018) 160–170.
- A. Zapata-Sierra, M. Cascajares, A. Alcayde, F. Manzano-
Agugliaro, Worldwide research trends on desalination,
Desalination, 519 (2021) 115305, doi: 10.1016/j.desal.2021.115305.
- A. Gómez-Gotor, B. Del Río-Gamero, I. Prieto Prado, A. Casañas,
The history of desalination in the Canary Islands, Desalination,
428 (2018) 86–107.
- N.A. Ahmad, P.S. Goh, L.T. Yogarathinam, A.K. Zulhairun,
A.F. Ismail, Current advances in membrane technologies for
produced water desalination, Desalination, 493 (2020) 114643,
doi: 10.1016/j.desal.2020.114643.
- S. Aly, H. Manzoor, S. Simson, A. Abotaleb, J. Lawler,
A.N. Mabrouk, Pilot testing of a novel multi effect distillation
(MED) technology for seawater desalination, Desalination,
519 (2021) 115221, doi: 10.1016/j.desal.2021.115221.
- C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-theart
of reverse osmosis desalination, Desalination, 216 (2007)
1–76.
- S.F. Anis, R. Hashaikeh, N. Hilal, Reverse osmosis pretreatment
technologies and future trends: a comprehensive review,
Desalination, 452 (2019) 159–195.
- L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin,
Reverse osmosis desalination: Water sources, technology, and
today’s challenges, Water Res., 43 (2009) 2317–2348.
- X. Zhang, J. Jiang, F. Yuan, W. Song, J. Li, D. Xing, L. Zhao,
W. Dong, X. Pan, X. Gao, Estimation of water footprint in
seawater desalination with reverse osmosis process, Environ.
Res., 204 (2022) 112374, doi: 10.1016/j.envres.2021.112374.
- Y. Li, E.R. Thomas, M.H. Molina, S. Mann, W. Shane
Walker, M.L. Lind, F. Perreault, Desalination by membrane
pervaporation: a review, Desalination, 547 (2023) 116223,
doi: 10.1016/j.desal.2022.116223.
- X. Cheng, F. Pan, M. Wang, W. Li, Y. Song, G. Liu, H. Yang,
B. Gao, H. Wu, Z. Jiang, Hybrid membranes for pervaporation
separations, J. Membr. Sci., 541 (2017) 329–346.
- A. Darmawan, L. Munzakka, L. Karlina, R.E. Saputra,
S. Sriatun, Y. Astuti, A.S. Wahyuni, Pervaporation membrane
for desalination derived from tetraethylorthosilicatemethyltriethoxysilane,
J. Sol-Gel Sci. Technol., 101 (2022)
505–518.
- G. Liu, W. Jin, Pervaporation membrane materials: recent
trends and perspectives, J. Membr. Sci., 636 (2021) 119557,
doi: 10.1016/j.memsci.2021.119557.
- Y. Song, F. Pan, Y. Li, K. Quan, Z. Jiang, Mass transport
mechanisms within pervaporation membranes, Front. Chem.
Sci. Eng., 13 (2019) 458–474.
- L.M. Vane, Review of pervaporation and vapor permeation
process factors affecting the removal of water from industrial
solvents, J. Chem. Technol. Biotechnol., 95 (2020) 495–512.
- Q. Wang, N. Li, B. Bolto, M. Hoang, Z. Xie, Desalination by
pervaporation: a review, Desalination, 387 (2016) 46–60.
- X. He, T. Wang, J. Huang, J. Chen, J. Li, Fabrication and
characterization of superhydrophobic PDMS composite
membranes for efficient ethanol recovery via pervaporation,
Sep. Purif. Technol., 241 (2020) 116675, doi: 10.1016/j.seppur.2020.116675.
- M.S. Jyothi, K. Raghava Reddy, K. Soontarapa, S. Naveen,
A.V. Raghu, R.V. Kulkarni, D.P. Suhas, N.P. Shetti,
M.N. Nadagouda, T.M. Aminabhavi, Membranes for dehydration
of alcohols via pervaporation, J. Environ. Manage.,
242 (2019) 415–429.
- B. Liang, K. Pan, L. Li, E.P. Giannelis, B. Cao, High performance
hydrophilic pervaporation composite membranes for water
desalination, Desalination, 347 (2014) 199–206.
- B. Liang, Q. Li, B. Cao, P. Li, Water permeance, permeability
and desalination properties of the sulfonic acid functionalized
composite pervaporation membranes, Desalination, 433 (2018)
132–140.
- J. Meng, P. Li, B. Cao, High-flux direct-contact pervaporation
membranes for desalination, ACS Appl. Mater. Interfaces,
11 (2019) 28461–28468.
- W. Yave, The improved pervaporation PERVAP membranes,
Filtr. Sep., 54 (2017) 14–15.
- W. Yave, A. Car, S.S. Funari, S.P. Nunes, K.-V. Peinemann, CO2-philic polymer membrane with extremely high separation
performance, Macromolecules, 43 (2010) 326–333.
- J. Marszałek, M. Tylman, P. Rdzanek, W. Kaminski, The
influence of hydrodynamic conditions on the recovery of
acetone, butanol and ethanol in pervaporation membrane
modules, Chem. Process Eng., (2018) 155–163.
- B. Tomaszewska, Pilotowa instalacja odsalania wód
geotermalnych w Polsce, p. 10.
- B. Tomaszewska, Pozyskanie wód przeznaczonych do
spożycia oraz cieczy i substancji balneologicznych w procesie
uzdatniania wód geotermalnych, Kraków: Wydawnictwo
IGSMiE PAN, 2018.
- M. Ptak, A. Choiński, M. Sojka, S. Zhu, Changes in the water
resources of selected lakes in Poland in the period 1916–2020
as information to increase their availability, Sustainability,
13 (2021) 7298,
doi: 10.3390/su13137298.
- W. Górecki, A. Sowiżdżał, M. Hajto, A. Wachowicz-Pyzik,
Atlases of geothermal waters and energy resources in Poland,
Environ. Earth Sci., 74 (2015) 7487–7495.
- T. Maćkowski, A. Sowiżdżał, A. Wachowicz-Pyzik, Seismic
methods in geothermal water resource exploration: case study
from Łódź Trough, Central Part of Poland, Geofluids, 2019
(2019) 3052806, doi: 10.1155/2019/3052806.
- A. Sowiżdżał, W. Górecki, M. Hajto, Geological conditions of
geothermal resources occurrence in Poland, Geol. Q., (2020),
doi: 10.7306/GQ.1526.
- Y. Baek, C. Kim, D.K. Seo, T. Kim, J.S. Lee, Y.H. Kim, K.H. Ahn,
S.S. Bae, S.C. Lee, J. Lim, K. Lee, J. Yoon, High performance and
antifouling vertically aligned carbon nanotube membrane for
water purification, J. Membr. Sci., 460 (2014) 171–177.
- L. Fortunato, A.H. Alshahri, A.S.F. Farinha, I. Zakzouk, S. Jeong,
T. Leiknes, Fouling investigation of a full-scale seawater
reverse osmosis desalination (SWRO) plant on the Red Sea:
membrane autopsy and pretreatment efficiency, Desalination,
496 (2020) 114536, doi: 10.1016/j.desal.2020.114536.
- W. Gao, H. Liang, J. Ma, M. Han, Z.-l. Chen, Z.-s. Han,
G.-b. Li, Membrane fouling control in ultrafiltration technology
for drinking water production: a review, Desalination,
272 (2011) 1–8.
- S. Yang, S. Abdalkareem Jasim, D. Bokov, S. Chupradit,
A.T. Nakhjiri, A.S. El-Shafay, Membrane distillation technology
for molecular separation: a review on the fouling, wetting
and transport phenomena, J. Mol. Liq., 349 (2021) 118115,
doi: 10.1016/j.molliq.2021.118115.
- W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling,
Bioresour. Technol., 122 (2012) 27–34.
- Y.-G. Lee, S. Kim, J. Shin, H. Rho, Y. Lee, Y.M. Kim, Y. Park,
S.-E. Oh, J. Cho, K. Chon, Fouling behavior of marine organic
matter in reverse osmosis membranes of a real-scale seawater
desalination plant in South Korea, Desalination, 485 (2020)
114305, doi: 10.1016/j.desal.2019.114305.
- Y.C. Woo, J.J. Lee, L.D. Tijing, H.K. Shon, M. Yao, H.-S. Kim,
Characteristics of membrane fouling by consecutive chemical
cleaning in pressurized ultrafiltration as pre-treatment of
seawater desalination, Desalination, 369 (2015) 51–61.
- D. Zhao, J. Song, J. Xu, S. Yu, J. Liu, Y. Zhu, Z. Gu, G. Liu,
Behaviours and mechanisms of nanofiltration membrane
fouling by anionic polyacrylamide with different molecular
weights in brackish wastewater desalination, Desalination,
468 (2019) 114058, doi: 10.1016/j.desal.2019.06.024.
- Y. Lin, T.B. Kouznetsova, S.L. Craig, Mechanically gated
degradable polymers, J. Am. Chem. Soc., 142 (2020) 2105–2109.
- M. Rutkowska, A. Heimowska, Degradation of naturally
occurring polymeric materials in sea water environment,
Polimery, 53 (2008) 854–864.
- R. Scaffaro, A. Maio, F. Sutera, E. Gulino, M. Morreale,
Degradation and recycling of films based on biodegradable
polymers: a short review, Polymers, 11 (2019) 651, doi: 10.3390/polym11040651.
- B. Yang, Y. Yang, Z. Huo, Y. Yu, Advances in research on
aging properties of polyvinyl chloride and polyvinylidene
fluoride membranes, Constr. Build. Mater., 367 (2023) 130292,
doi: 10.1016/j.conbuildmat.2023.130292.
- F. Khalid, A.S. Roy, A. Parveen, R. Castro-Muñoz, Fabrication
of the cross-linked PVA/TiO2/C nanocomposite membrane
for alkaline direct methanol fuel cells, Mater. Sci. Eng., B,
299 (2024) 116929, doi: 10.1016/j.mseb.2023.116929.
- C.-C. Yang, Synthesis and characterization of the cross-linked
PVA/TiO2 composite polymer membrane for alkaline DMFC,
J. Membr. Sci., 288 (2007) 51–60.
- woda morska, Encyklopedia PWN: źródło wiarygodnej i
rzetelnej wiedzy (Accessed: Nov. 19, 2023). Available at https://
encyklopedia.pwn.pl/haslo/woda-morska;3997253.html
- D.O. Shaltami, Chemical composition of seawater.
- F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, The
composition of Standard Seawater and the definition of the
Reference-Composition Salinity Scale, Deep Sea Res. Part I,
55 (2008) 50–72.
- Regulation of the Minister of Health of 7 December 2017 on the
Quality of Water Intended for Human Consumption, Journal of
Laws of 2017, Item 2294 (in Polish).