References

  1. K. Czarny, B. Krawczyk, D. Szczukocki, Toxic effects of bisphenol A and its analogues on cyanobacteria Anabaena variabilis and Microcystis aeruginosa, Chemosphere, 263 (2021) 128299, doi: 10.1016/j.chemosphere.2020.128299.
  2. J.J. Wang, J.N. Yu, Y. Yu, Z.S. Luo, G.F. Li, X.Y. Lin, Nanoporous electrode with stable polydimethylsiloxane coating for direct electrochemical analysis of bisphenol A in complex wine media, Food Chem., 405 (2023) 134806, doi: 10.1016/j.foodchem.2022.134806.
  3. K. Czarny-Krzymińska, B. Krawczyk, D. Szczukocki, Bisphenol A and its substitutes in the aquatic environment: occurrence and toxicity assessment, Chemosphere, 315 (2023) 137763, doi: 10.1016/j.chemosphere.2023.137763.
  4. R.X. Ma, J.X. Jiang, Y.F. Ya, Y. Lin, Y.Y. Zhou, Y.Y. Wu, X.C. Tan, K.J. Huang, F.K. Du, J.J. Xu, A carbon dot-based nanoscale covalent organic framework as a new emitter combined with a CRISPR/Cas12a-mediated electrochemiluminescence biosensor for ultrasensitive detection of bisphenol A, Analyst, 146 (2023) 1362–1370.
  5. S.J. Singh, A. Tandon, Phoolmala, T. Srivastava, N. Singh, S. Goyal, S. Priya, R.K. Chaturvedi, Mol, Bisphenol-A (BPA) impairs Hippocampal neurogenesis via inhibiting regulation of the ubiquitin proteasomal system, Mol. Neurobiol., 60 (2023) 3277–3298.
  6. H.Y. Yu, W.L. Song, X. Chen, Q. Zhao, X.X. Du, Transcriptomic analysis reveals up-regulated histone genes may play a key role in zebrafish embryo-larvae response to Bisphenol A (BPA) exposure, Ecotoxicol. Environ. Saf., 252 (2023) 114578, doi: 10.1016/j.ecoenv.2023.114578.
  7. A. Hassani, P. Eghbali, F. Mahdipour, S. Wacławek, K.Y.A. Lin, F. Ghanbari, Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: performance, mineralization, and activation mechanism, Chem. Eng. J., 453 (2023) 139556, doi: 10.1016/j.cej.2022.139556.
  8. C.P. Gao, G. Liu, X.M. Liu, X.Y Wang, M.M. Liu, Y.L. Chen, X. Jiang, G.X. Wang, Z.C. Teng, W.L Yang, Flower-like
    n-Bi2O3/n-BiOCl heterojunction with excellent photocatalytic performance for visible light degradation of Bisphenol A and Methylene blue, J. Alloys Compd., 929 (2022) 167296, doi: 10.1016/j.jallcom.2022.167296.
  9. X.H. Wang, W.W. Tang, L.B. Jiang, J. Feng, J.J. Yang, S.Y. Zhou, W.Q. Li, X.Z. Yuan, H. Wang, J.J. Wang, Y.Q. Bu, Mechanism insights into visible light-induced crystalline carbon nitride activating periodate for highly efficient ciprofloxacin removal, Chem. Eng. J., 471 (2023) 144521, doi: 10.1016/j.cej.2023.144521.
  10. S.Y. Zhou, L.B. Jiang, H. Wang, J.J. Yang, X.Z. Yuan, H. Wang, J. Liang, X.D. Li, H. Li, Y.Q. Bu, Oxygen vacancies modified TiO2/O-terminated Ti3C2 composites: unravelling the dual effects between oxygen vacancy and high-work-function titanium carbide, Adv. Funct. Mater., 33 (2023) 2307702, doi: 10.1002/adfm.202307702.
  11. A. Iqbal, F.B. Shittu, M.N.M. Ibrahim, N.H.H. Abu Bakar, N. Yahaya, K. Rajappan, M.H. Hussin, W.H. Danial, L.D. Wilson, Photoreactive carbon dots modified g-C3N4 for effective photooxidation of bisphenol-a under visible light irradiation, Catalysts, 12 (2022) 1311, doi: 10.3390/catal12111311.
  12. X.M. Gu, T.J. Chen, J. Lei, Y. Yang, X.Z. Zheng, S.J. Zhang, Q.S. Zhu, X.L. Fu, S.G. Meng, S.F. Chen, Self-assembly synthesis of S-scheme g-C3N4/Bi8(CrO4)O11 for photocatalytic degradation of norfloxacin and bisphenol A, Chin. J. Catal., 43 (2022) 2569–2580.
  13. Y.F. Li, M.H. Zhou, B. Cheng, Y. Shao, Recent advances in g-C3N4-based heterojunction photocatalysts, J. Mater. Sci. Technol., 56 (2020) 1–17.
  14. W.G. Li, Y.J. Zuo, L. Jiang, D.C. Yao, Z.J. Chen, G.Y. He, H.Q. Chen, Bi2Ti2O7/TiO2/RGO composite for the simulated sunlight-driven photocatalytic degradation of ciprofloxacin, Mater. Chem. Phys., 256 (2020) 123650, doi: 10.1016/j.matchemphys.2020.123650.
  15. A.K. Yadav, A. Gaur, K.K. Haldar, Effect of oxygen vacancies, lattice distortions and secondary phase on the structural, optical, dielectric and ferroelectric properties in Cd-doped Bi2Ti2O7 nanoparticles, Mater. Res. Bull., 141 (2021) 111373, doi: 10.1016/j.materresbull.2021.111373.
  16. Y. Naciri, A. Hsini, A. Ahdour, B. Akhsassi, K. Fritah, Z. Ajmal, R. Djellabi, A. Bouziani, A. Taoufyq, B. Bakiz, A. Benlhachemi, M. Sillanpää, H.T. Li, Recent advances of bismuth titanate based photocatalysts engineering for enhanced organic contaminates oxidation in water: a review, Chemosphere, 300 (2022) 134622, doi: 10.1016/j.chemosphere.2022.134622.
  17. G.A. Kallawar, D.P. Barai, B.A. Bhanvase, Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: a comprehensive review on synthesis methods, performance as photocatalyst and challenges, J. Cleaner Prod., 318 (2021) 128563, doi: 10.1016/j.jclepro.2021.128563.
  18. S.T.U. Din, W.F. Xie, W.C. Yang, Synthesis of Co3O4 nanoparticlesdecorated Bi12O17Cl2 hierarchical microspheres for enhanced photocatalytic degradation of RhB and BPA, Int. J. Mol. Sci., 23 (2022) 15028, doi: 10.3390/ijms232315028.
  19. L.D. Kong, H.H. Chen, W.M. Hua, S.C. Zhang, J.M. Chen, Mesoporous bismuth titanate with visible-light photocatalytic activity, Chem. Commun., 40 (2008) 4977–4979.
  20. D. Zhou, H. Yang, Y.F. Tu, Y. Tian, Y.X. Cai, Z.L. Hu, X.L. Zhu, In-situ fabrication of Bi2Ti2O7/TiO2 heterostructure submicron fibers for enhanced photocatalytic activity, Nanoscale Res. Lett., 11 (2016) 193,
    doi: 10.1186/s11671-016-1408-7.
  21. N.A. Lomanova, M.V. Tomkovich, V.V. Sokolov, Ugolkov, V.L. Ugolkov, Formation and thermal behavior of nanocrystalline Bi2Ti2O7, Russ. J. Gen. Chem., 88 (2018) 2459–2464.
  22. A.A. Bush, M.V. Talanov, A.I. Stash, S.A. Ivanov, K.E. Kamentsev, Relaxor-like behavior and structure features of Bi2Ti2O7 pyrochlore single crystals, Cryst. Growth Des., 20 (2020) 824−831.
  23. H. Liu, Y.J. Chen, G.H. Tian, Z.Y. Ren, C.G. Tian, H.G. Fu, Visible-light-induced self-cleaning property of Bi2Ti2O7-TiO2 composite nanowire arrays, Langmuir, 31 (2015) 5962–5969.
  24. B.T. Liu, Q.H. Mo, J.L. Zhu, Z.P. Hou, L.L. Peng, Y.J. Tu, Q.Y. Wang, Synthesis of Fe and N Co-doped Bi2Ti2O7 nanofiber with enhanced photocatalytic activity under visible light irradiation, Nanoscale Res. Lett., 11 (2016) 391, doi: 10.1186/s11671-016-1610-7.
  25. P.J. Li, C.Y. Jiang, C.S. Feng, Y.P. Wang, Effects of different exposed-facets on photocatalytic activity of BiOBr/Bi2Ti2O7 heterostructure and mechanism analysis, Mater. Chem. Phys., 252 (2020) 123426, doi: 10.1016/j.matchemphys.2020.123426.
  26. Z.Y. Zhang, C.Y. Jiang, P. Du, Y.P. Wang, Synthesis and characterization of Bi2Ti2O7/TiO2 heterojunction by glycerolassisted alcoholthermal method, Ceram. Int., 41 (2015) 3932–3939.
  27. J.H. Li, M.S. Han, Y. Guo, F. Wang, L.J. Meng, D.J. Mao, S.S. Ding, C. Sun, Hydrothermal synthesis of novel flower-like BiVO4/Bi2Ti2O7 with superior photocatalytic activity toward tetracycline removal, Appl. Catal., A, 524 (2016) 105–114.
  28. K. Qian, L. Xia, W. Wei, L.L. Chen, Z.F. Jiang, J.J. Jing, J.M. Xie, Construction of Bi2Ti2O7/Bi4Ti3O12 composites with enhanced visible light photocatalytic activity, Mater. Lett., 206 (2017) 245–248.
  29. N. Li, M.L. Shi, Y. Xin, W. Zhang, J.N. Qin, K. Zhang, H.Q. Lv, M.Z. Yuan, C.Y. Wang, Oxygen vacancies-modified
    S-scheme Bi2Ti2O7/CaTiO3 heterojunction for highly efficient photocatalytic NO removal under visible light, J. Environ. Chem. Eng., 10 (2022) 107420, doi: 10.1016/j.jece.2022.107420.
  30. Y.X. Xu, D.F. Lin, X.P. Liu, Y.J. Luo, H. Xue, B.Q. Huang, Q.H. Chen, Q.R. Qian, Electrospun BiOCl/Bi2Ti2O7 nanorod heterostructures with enhanced solar light efficiency in the photocatalytic degradation of tetracycline hydrochloride, ChemCatChem, 10 (2018) 2496–2504.
  31. C.L. Mayfield, M.N. Huda, Free energy landscape approach to aid pure phase synthesis of transition metal (X = Cr, Mn and Fe) doped bismuthtitanate (Bi2Ti2O7), J. Cryst. Growth, 444 (2016) 46–54.
  32. F.F. Li, X. Liu, J.X. Zhao, L. Liu, S. He, D.H. Bao, Red-orange photoluminescence and dielectric relaxation
    of Eu3+-doped Bi2Ti2O7 pyrochlore structure thin films, Mater. Chem. Phys., 162 (2015) 801–806.
  33. Y.K. Cun, Z.W. Yang, J. Li, B. Shao, J.Z. Yang, Y.D. Wang, J.B. Qiu, Z.G. Song, Enhanced upconversion emission of three dimensionally ordered macroporous films Bi2Ti2O7:Er3+, Yb3+ with silica shell, Ceram. Int., 41 (2015) 11770–11775.
  34. L.B. Jiang, J.J. Yang, S.Y. Zhou, H.B. Yu, J. Liang, W. Chu, H. Li, H. Wang, Z.B. Wu, X.Z. Yuan, Strategies to extend near-infrared light harvest of polymer carbon nitride photocatalysts, Coord. Chem. Rev., 439 (2021) 213947, doi: 10.1016/j.ccr.2021.213947.
  35. H.M. Huang, L.B. Jiang, J.J. Yang, S.Y. Zhou, X.Z. Yuan, J. Liang, H. Wang, H. Wang, Y.Q. Bu, Hui Li, Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications, Renewable Sustainable Energy Rev., 173 (2023) 113110, doi: 10.1016/j.rser.2022.113110.
  36. J. Mei, D.P. Zhang, N. Li, M.X. Zhang, X.Y. Gu, S.C. Miao, S.H. Cui, J. Yang, The synthesis of Ag3PO4/g-C3N4 nanocomposites and the application in the photocatalytic degradation of bisphenol A under visible light irradiation, J. Alloys Compd., 749 (2018) 715–723.
  37. J.J. Lu, X.G. Tang, W.M. Zhong, Y.P. Jiang, Q.X. Liu, Resistive switching characteristics of interfacial device based on Bi2Ti2O7 film, Surf. Interfaces, 37 (2023) 102655, doi: 10.1016/j.surfin.2023.102655.
  38. M. Musso, S. Veiga, A.D. Leon, A. Quevedo, J. Bussi, Characterization and application of a bismuth titanate Bi2Ti2O7 synthetized through a solvothermal route for glycerol photooxidation and photoreforming, Mater. Lett., 330 (2023) 133346, doi: 10.1016/j.matlet.2022.133346.
  39. Z.W. Qiao, W.Q. Chu, H. Zhou, C. Peng, Z.Z. Guan, J. Wu, S. Yoriya, P. He, H. Zhang, Y.F. Qi, Construction of Z scheme
    S-g-C3N4/Bi5O7I photocatalysts for enhanced photocatalytic removal of Hg0 and carrier separation, Sci. Total Environ., 872 (2023) 162309, doi: 10.1016/j.scitotenv.2023.162309.
  40. D.Y. Yang, Y. Wang, J. Zhao, J.D. Dai, Y.S. Yan, L. Chen, J. Ye, Strong coupling of super-hydrophilic and vacancy-rich
    g-C3N4 and LDH heterostructure for wastewater purification: adsorption-driven oxidation, J. Colloid Interface Sci., 639 (2023) 355–368.
  41. S.M. Wang, D.L. Li, C. Sun, S.G. Yang, Y. Guan, H. He, Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation, Appl. Catal., B, 144 (2014) 885–892.
  42. B. Hu, F.P. Cai, T.J. Chen, M.S. Fan, C.J. Song, X. Yan, W.D. Shi, Hydrothermal synthesis g-C3N4/nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation, ACS Appl. Mater. Interfaces, 7 (2015) 18247–18256.
  43. W.X. Wang, Z. Li, K.L. Wu, G.D. Dai, Q.P. Chen, L.H. Zhou, J.X. Zheng, L. Ma, G.Y. Li, W.J. Wang, T.C. An, Novel
    Ag-bridged dual Z-scheme g-C3N4/BiOI/AgI plasmonic heterojunction: exceptional photocatalytic activity towards tetracycline and the mechanism insight, J. Environ. Sci., 131 (2023) 123–140.
  44. R.L. Wei, H. Wang, L.B. Jiang, J.J. Yang, W.Q. Li, X.Z. Yuan, H. Wang, J. Liang, Y.N. Chen, Y.Q. Bu, Molecular selfassembled synthesis of highly dispersed Co single-atom coordinated 2-methylimidazole modified carbon nitride for peroxymonosulfate activation, Chem. Eng. J., 471 (2023) 144494–144506.
  45. D.K. Gorai, S.K. Kuila, A. Oraon, A. Kumar, M. Suthar, R. Mitra, K. Biswas, P.K. Roy, M.I. Ahmad, T.K. Kundu, A facile and green synthesis of Mn and P functionalized graphitic carbon nitride nanosheets for spintronics devices and enhanced photocatalytic performance under visible-light, J. Colloid Interface Sci., 644 (2023) 397–414.
  46. X.Y. Li, H.X. Mai, N. Cox, J.L. Lu, X.M. Wen, D.H. Chen, R.A. Caruso, Sb-substituted Cs2AgBiBr6/g-C3N4 composite for photocatalytic C(sp3)-H bond activation in toluene, Chem. Mater., 35 (2023) 3105–3114.
  47. X.J. Zhou, G. Zhang, C.L. Shao, X.H. Li, X. Jiang, Y.C. Liu, Fabrication of g-C3N4/SiO2-Au composite nanofibers with enhanced visible photocatalytic activity, Ceram. Int., 43 (2017) 15699–15707.
  48. C.Y. Jin, C.H. Xu, W.X. Chang, X.Y. Ma, X.Y. Hu, E.Z. Liu, J. Fan, Bimetallic phosphide NiCoP anchored g-C3N4 nanosheets for efficient photocatalytic H2 evolution, J. Alloys Compd., 803 (2019) 205–215.
  49. J. Ren, Y.Y. Chai, Q.Q. Liu, L. Zhang, W.L. Dai, Intercorrelated Ag3PO4 nanoparticles decorated with graphic carbon nitride: enhanced stability and photocatalytic activities for water treatment, Appl. Surf. Sci., 403 (2017) 177–186.
  50. Q.Y. Rong, D.P. Zhang, Y. Li, Z.X. Zha, X.X. Geng, S.H. Cui, J. Yang, Synthesis of Bi2MoO6/Bi2Ti2O7 Z-scheme heterojunction as efficient visible-light photocatalyst for the glycolic acid degradation, J. Nanosci. Nanotechnol., 19 (2019) 7635–7644.
  51. J.H. Yi, X.J. Yuan, H.J. Wang, H. Yu, F. Peng, Preparation of Bi2Ti2O7/TiO2 nanocomposites and their photocatalytic performance under visible light irradiation, Mater. Des., 86 (2015) 152–155.
  52. J.L. Zhang, H. Liu, Z. Ma, Flower-like Ag2O/Bi2MoO6 p-n heterojunction with enhanced photocatalytic activity under visible light irradiation, J. Mol. Catal. A: Chem., 424 (2016) 37–44.
  53. H.F. Shi, H.Q. Tan, W.B. Zhu, Z.C. Sun, Y.J. Ma, E.B. Wang, Electrospun Cr-doped Bi4Ti3O12/Bi2Ti2O7 heterostructure fibers with enhanced visible-light photocatalytic properties, J. Mater. Chem. A, 3 (2015) 6586–6591.
  54. Q.H. Zhu, R. Hailili, Y. Xin, Y.T. Zhou, Y. Huang, X.Z. Pang, K. Zhang, P.K.J. Robertson, D.W. Bahnemann, C.Y. Wang, Efficient full spectrum responsive photocatalytic NO conversion at Bi2Ti2O7: co-effect of plasmonic Bi and oxygen vacancies, Appl. Catal. B: Environ., 319 (2022) 121888, doi: 10.1016/j.apcatb.2022.121888.
  55. Z.H. Zhao, Y. Wang, Q. Yu, X.C. Lin, X.W. Xu, J. Zhang, H.J. Lu, X.X. Chen, D.P. Zhang, Construction of AgBiO3/g-C3N4 nanocomposites with enhanced photocatalytic activity and their application in the degradation of bisphenol A, Desal. Water Treat., 227 (2021) 228–237.
  56. V. Vinesh, M. Preeyanghaa, T.R. Naveen Kumar, M. Ashokkumar, C.L. Bianchi, B. Neppolian, Revealing the stability of CuWO4/g-C3N4 nanocomposite for photocatalytic tetracycline degradation from the aqueous environment and DFT analysis, Environ. Res., 207 (2022) 112112, doi: 10.1016/j.envres.2021.112112.
  57. H. Sudrajat, S. Babel, A new, cost-effective solar photoactive system N-ZnO@polyester fabric for degradation of recalcitrant compound in a continuous flow reactor, Mater. Res. Bull., 83 (2016) 369–378.
  58. D.P. Zhang, S.H. Cui, J. Yang, Preparation of Ag2O/g-C3N4/Fe3O4 composites and the application in the photocatalytic degradation of Rhodamine B under visible light, J. Alloys Compd., 708 (2017) 1141–1149.
  59. Y. Zhong, J.Q. Chang, C.H. Hu, J.F. Zhou, Fabrication of novel heterostructured catalyst Ag@AgCl/Bi2Ti2O7 and its excellent visible light photocatalytic performance, J. Mol. Struct., 1222 (2020) 128938, doi: 10.1016/j.molstruc.2020.128938.
  60. J.H. Lai, P. Xiao, Y.F. Li, S.H. Cui, J. Yang, H.Z. Lian, Visible light and iodate/iodide mediated degradation of bisphenol A by self-assembly 3D hierarchical BiOIO3/Bi5O7I Z-scheme heterojunction: intermediates identification, radical mechanism and DFT calculation, J. Hazard. Mater., 448 (2023) 130908, doi: 10.1016/j.jhazmat.2023.130908.
  61. X.Y. Gu, J. Mei, J.H. Lai, S.Y. Lv, J. Yang, S.H. Cui, S. Chen, Synthesis of Z-scheme heterojunction ZnNb2O6/g-C3N4 nanocomposite as a high efficient photo-catalyst for the degradation of 2,4-DCP under simulated sunlight, Mater. Res. Bull., 130 (2020) 110939, doi: 10.1016/j.materresbull.2020.110939.
  62. J.H. Lai, X.Y. Jiang, M. Zhao, S.H. Cui, J. Yang, Y.F. Li, Thicknessdependent layered BiOIO3 modified with carbon quantum dots for photodegradation of bisphenol A: mechanism, pathways and DFT calculation, Appl. Catal., B, 298 (2021) 120622, doi: 10.1016/j.apcatb.2021.120622.