References

  1. P. De Schryver, A.K. Sinha, P.S. Kunwar, K. Baruah, W. Verstraete, N. Boon, G. De Boeck and P. Bossier, Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax, Appl. Microbiol. Biot., 86 (2010) 1535–1541.
  2. D.W. Schindler, Recent advances in the understanding and management of eutrophication, Limnol. Oceanogr., 51 (2006) 356–363.
  3. Z.-G. Ji, Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries, John Wiley & Sons, Hoboken, New Jersey, 2007.
  4. J. Laurent, R.W. Samstag, J.M. Ducoste, A. Griborio, I. Nopens, D.J. Batstone, J.D. Wicks, S. Saunders and O. Potier, A protocol for the use of computational fluid dynamics as a supportive tool for wastewater treatment plant modelling, Water Sci. Technol., 70 (2014) 1575.
  5. I.-B. Lee, J.P.P. Bitog, S.-W. Hong, I.-H. Seo, K.-S. Kwon, T. Bartzanas and M. Kacira, The past, present and future of CFD for agro-environmental applications, Comp. Electron. Agriculture, 93 (2013) 168–183.
  6. R.E. Burrows and H.H. Chenoweth, Evaluation of Three Types of Fish Rearing Ponds Evaluation of Three Types of Fish Rearing Ponds, Vol. 39, US Government Printing Office, Washington D.C., 1955.
  7. M.B. Timmons, S.T. Summerfelt and B.J. Vinci, Review of circular tank technology and management, Aquacult. Eng., 18 (1998) 51–69.
  8. J. Oca and I. Masalo, Flow pattern in aquaculture circular tanks: Influence of flow rate, water depth, and water inlet & outlet features, Aquacult. Eng., 52 (2013) 65–72.
  9. S.T. Summerfelt, J. Davidson, G. Wilson and T. Waldrop, Advances in fish harvest technologies for circular tanks, Aquacult. Eng., 40 (2009) 62–71.
  10. C.S. Tucker and J.A. Hargreaves, Environmental Best Management Practices for Aquaculture, John Wiley & Sons, Hoboken, New Jersey, 2009.
  11. E. Carballo, A. van Eer, T. Van Schie and A. Hilbrands, Small- Scale Freshwater Fish Farming, Agromisa Foundation and CTA, Wageningen, The Netherlands, 2008.
  12. O.-I. Lekang, Aquaculture Engineering, John Wiley & Sons, Hoboken, New Jersey, 2013.
  13. M.P. Masser and J.W. Jensen, Calculating Area and Volume of Ponds and Tanks, Southern Regional Aquaculture Center, Stoneville, Mississippi, 1991.
  14. J. Oca and I. Masaló, Design criteria for rotating flow cells in rectangular aquaculture tanks, Aquacult. Eng., 36 (2007) 36–44.
  15. F. Paezosuna, Shrimp aquaculture development and the environment in the Gulf of California ecoregion, Mar. Pollut Bull., 46 (2003) 806–815.
  16. E.L. Peterson, Observations of pond hydrodynamics, Aquacult. Eng., 21 (2000) 247–269.
  17. J. Davidson and S. Summerfelt, Solids flushing, mixing, and water velocity profiles within large (10 and 150 m3) circular “Cornell- type” dual-drain tanks, Aquacult. Eng., 32 (2004) 245–271.
  18. C.-W. Bi, Y.-P. Zhao, G.-H. Dong, Y.-N. Zheng and F.-K. Gui, A numerical analysis on the hydrodynamic characteristics of net cages using coupled fluid–structure interaction model, Aquacult. Eng., 59 (2014) 1–12.
  19. S. Delaux, C.L. Stevens and S. Popinet, High-resolution computational fluid dynamics modelling of suspended shellfish structures, Environ. Fluid. Mech., 11 (2011) 405–425.
  20. D.L. Huggins, R.H. Piedrahita and T. Rumsey, Use of computational fluid dynamics (CFD) for aquaculture raceway design to increase settling effectiveness, Aquacult. Eng., 33 (2005) 167–180.
  21. D.L. Huggins, R.H. Piedrahita and T. Rumsey, Analysis of sediment transport modeling using computational fluid dynamics (CFD) for aquaculture raceways, Aquacult. Eng., 31 (2004) 277–293.
  22. R.A. Labatut, J.M. Ebeling, R. Bhaskaran and M.B. Timmons, Modeling hydrodynamics and path/residence time of aquaculture-like particles in a mixed-cell raceway (MCR) using 3D computational fluid dynamics (CFD), Aquacult. Eng., 67 (2015) 39–52.
  23. R.A. Labatut, J.M. Ebeling, R. Bhaskaran and M.B. Timmons, Exploring flow discharge strategies of a mixed-cell raceway (MCR) using 2-D computational fluid dynamics (CFD), Aquacult. Eng., 66 (2015) 68–77.
  24. J.H. Montas, G.V.S. Prabhakar and F. Wheaton, CFD analysis of flow in aquaculture tanks. Proc. 93rd Annual International Meeting of ASAE. Biological Resources Engineering Department. University of Maryland at College Park, 9–12 July. ASAE paper No 003111, (2000) 1–24.
  25. A. Alvarado, M. Vesvikar, J.F. Cisneros, T. Maere, P. Goethals and I. Nopens, CFD study to determine the optimal configuration of aerators in a full-scale waste stabilization pond, Water Res., 47 (2013) 4528–4537.
  26. B. Wu and Z. Chen, An integrated physical and biological model for anaerobic lagoons, Bioresource Technol., 102 (2011) 5032–5038.
  27. V.R. Stovin, J.P. Grimm and S.-T.D. Lau, Solute Transport Modeling for Urban Drainage Structures, J. Environ. Eng.-ASCE, 134 (2008) 640–650. 34 A.F. Moussoh et al. / Desalination and Water Treatment 58 (2017) 19–34
  28. J. Kim, P. Moin and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177 (1987) 133–166.
  29. I. Marusic, D.D. Joseph and K. Mahesh, Laminar and turbulent comparisons for channel flow and flow control, J. Fluid Mech., 570 (2007) 467.
  30. B. Wu and S. Chen, CFD simulation of non-Newtonian fluid flow in anaerobic digesters, Biotechnol. Bioeng., 99 (2008) 700–711.
  31. E. Furbo, Evaluation Of RANS Turbulence Models For Flow Problems With Significant Impact of Boundary Layers, M.Sc. Thesis, Uppsala University, Sweden, 2010).
  32. W. Wu, P. Wang and N. Chiba, Comparison of five depth-averaged 2-D turbulence models for river flows, Arch. Hydroeng. Environ. Mechanics, 51 (2004) 183–200.
  33. M.-L. Zhang, C.W. Li and Y.-M. Shen, A 3D non-linear k–ε turbulent model for prediction of flow and mass transport in channel with vegetation, Appl. Math. Model., 34 (2010) 1021–1031.
  34. M.P. Bulat and P.V. Bulat, Comparison of turbulence models in the calculation of supersonic separated flows, World App. Sci., J. 27 (2013) 1263–1266.
  35. E.C. Douvi, A.I. Tsavalos and D.P. Margaris. Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil, J. Mech. Eng. Res., 4 (2012)100-111.
  36. T.S.D. Karthik and F. Durst, Turbulence Models and Their Applications, Department of Mechanical Engineering, Indian Institute of Technology, Madras, India, 2011.
  37. F. Rostami, M. Shahrokhi, M.A. M.A.M. Said, R. Abdullah and Syafalni, Numerical modeling on inlet aperture effects on flow pattern in primary settling tanks, Appl. Math. Model., 35 (2011) 3012–3020.
  38. A. Yakhot, S.A. Orszag, V. Yakhot and M. Israeli, Renormalization group formulation of large-eddy simulations, J. Sci. Comput., 4 (1989) 139–158.
  39. B.E. Launder, G.J. Reece and W. Rodi, Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mech., 68 (1975) 537–566.
  40. L.N. Robinson, Water Resources Research Progress, Nova Publishers, New York, New Jersey, 2008.
  41. F.R. Menter, R.B. Langtry, S.R. Likki, Y.B. Suzen, P.G. Huang and S. Völker, A correlation-based transition model using local variables—Part I: Model formulation. J. Turbomach., 128 (2006) 413-422.
  42. Ansys Fluent, Ansys Fluent Theory Guide. http://www.ansys.com, visited on Oct. 1, 2013.
  43. W.H. Graf, Fluvial Hydraulics, John Wiley & Sons Ltd, Hoboken, New Jersey, 1998.
  44. S. Khatiwala, M. Visbeck and M.A. Cane, Accelerated simulation of passive tracers in ocean circulation models, Ocean Model., 9 (2005) 51–69.
  45. D. Kim, D.-I. Kim, J.-H. Kim and T. Stoesser, Large eddy simulation of flow and tracer transport in multichamber ozone contactors, J. Environ. Eng.-ASCE, 136 (2009) 22–31.
  46. W. Rauen, B. Lin, R. Falconer and E. Teixeira, CFD and experimental model studies for water disinfection tanks with low Reynolds number flows, Chem. Eng. J., 137 (2008) 550–560.
  47. B. Andersson, Ed., Computational Fluid Dynamics for Engineers, Cambridge University Press, Cambridge, New York, 2012.
  48. A. Alvarado, S. Vedantam, G. Durazno and I. Nopens, Hydraulic assessment of waste stabilization ponds: Comparison of computational fluid dynamics simulations against tracer data, MASKANA, 2(1) (2011) 81-89.
  49. L. Nastac, L. Zhang, B.G. Thomas, A. Sabau, N. El-Kaddah, A.C. Powell and H. Combeau, CFD Modeling and Simulation in Materials Processing, John Wiley & Sons, Hoobken, New Jersey, 2012.
  50. M. Ahsan, Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment, J. Basic Appl. Sci., 3 (2014) 269–277.
  51. A.M. Goula, M. Kostoglou, T.D. Karapantsios and A.I. Zouboulis, A CFD methodology for the design of sedimentation tanks in potable water treatment, Chem. Eng. J. 140 (2008) 110–121.
  52. M.-H. Chung, An adaptive Cartesian cut-cell/level-set method to simulate incompressible two-phase flows with embedded moving solid boundaries, Comput. Fluids, 71 (2013) 469–486.
  53. W.J. Coirier, An adaptively-refined, Cartesian, cell-based scheme for the Euler and Navier-Stokes equations, Ph.D. thesis, University of Michigan, Ann Arbor, Michigan, USA.
  54. M.W. Johnson, A novel Cartesian CFD cut cell approach, Comput. Fluids, 79 (2013) 105–119.
  55. J. Karcz and L. Kacperski, An effect of grid quality on the results of numerical simulations of the fluid flow field in an agitated vessel, Proc. 14th European Conference on Mixing, Warszawa, 2012.
  56. T. Frank, C. Lifante, H.-M. Prasser and F. Menter, Simulation of turbulent and thermal mixing in T-junctions using URANS and scale-resolving turbulence models in ANSYS CFX, Nucl. Eng. Des., 240 (2010) 2313–2328.
  57. T.X. Ho, P. Kosinski, A.C. Hoffmann and A. Vik, Numerical modeling of solid oxide fuel cells, Chem. Eng. Sci., 63 (2008) 5356–5365.
  58. M. Karimi, G. Akdogan, S.M. Bradshaw, Effects of different mesh schemes and turbulence models in CFD modelling of stirred tanks, Physicochem. Probl. Mi., 48 (2012) 513–531.
  59. X. Liu and G. Parker, Modeling of Hydrodynamics and Sediment Transport in St. Clair River, Report SD-12 of the St. Clair River Task Team for the International Upper Great Lakes Study, International Joint Commission (2009).
  60. A.R. Coughtrie, D.J. Borman and P.A. Sleigh, Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester, Bioresource Technol., 138 (2013) 297–306.
  61. G. Eggenspieler, Turbulence modeling, ANSYS Inc. Canonsburg, Pennsylvania, 2012.
  62. A. Alvarado, S. Vedantam, P. Goethals and I. Nopens, A compartmental model to describe hydraulics in a full-scale waste stabilization pond, Water Res., 46 (2012) 521–530.
  63. N.G. Wright and G.J. Easom, Non-linear k–ε turbulence model results for flow over a building at full-scale, Appl. Math. Model., 27 (2003) 1013–1033.
  64. B. Merci, B. Naud and D. Roekaerts, Flow and mixing fields for transported scalar PDF simulations of a piloted jet diffusion flame (“Delft Flame III”), Flow Turbul. Combust., 74 (2005) 239–272.
  65. P.L. Davis, A.T. Rinehimer and M. Uddin, A comparison of RANS-based turbulence modeling for flow over a wall-mounted square cylinder, In: Proceeding 20th Annual Conference of the CFD Society of Canada, 2012.
  66. R. Peyret and E. Krause, Advanced Turbulent Flow Computations, Springer, Vienna, Austria, 2014.
  67. C. Jacobs, Z. Qin and K. Bremhorst, Comparison of RANS modelling with DNS and experimental data for a converging-diverging nozzle and a rotating cylinder electrode, In: Fifth International Conference on CFD in the Process Industries, 400 (2006) 1–6.
  68. E. Vernon and H. Hamilton, Literature review on methods of control and eradication of Canadian pondweed and Nuttall’s pondweed in standing waters. Scottish Natural Heritage Commissioned Report No. 433, 2011.
  69. J.M. Evans, Ecosystem implications of invasive aquatic plants and aquatic plant control in Florida springs, Summary and synthesis of the available literature on the effects of nutrients on spring organisms and systems, University of Florida Water Institute, Gainesville, Florida, (2008) 231–270.
  70. R.J. Rolls, C. Leigh and F. Sheldon, Mechanistic effects of lowflow hydrology on riverine ecosystems: ecological principles and consequences of alteration, Freshwater Sci., 31 (2012) 1163–1186.
  71. R. Tarpagkou and A. Pantokratoras, CFD methodology for sedimentation tanks: The effect of secondary phase on fluid phase using DPM coupled calculations, Appl. Math. Model., 37 (2013) 3478–3494.
  72. R. Hreiz, B. Sialve, J. Morchain, R. Escudié, J.-P. Steyer and P. Guiraud, Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture, Chem. Eng. J., 250 (2014) 230–239