References

  1. R.K. Srivastav, S.K. Gupta, K.D.P. Nigam, P. Vasudevan, Treatment of chromium and nickel in wastewater by using aquatic plants, Water Resour., 28 (1994) 1631–1638.
  2. J.L. Gardea-Torresdey, L. Polette, S. Arteaga, K.J. Tiemann, J. Bibb, J.H. Gonzalez, Determination of the Content of Hazardous Heavy Metals on Larrea Tridentate Grown Around a Contaminated Area. Proc. Eleventh Ann. EPA Conf. on Hazardous Waste Research, L.R. Erickson, D.L. Tilison, S.C. Grant, J.P. McDonald, N.M. Albuquerque, 1996, pp. 660–672.
  3. R.B. Meagher, Phytoremediation of toxic elemental and organic pollutants, Curr. Opi. Plant Biol., 3 (2000) 153–162.
  4. H.A. Nasraoui, H. Gouia, H.C. Chaffei, Response of Arabidopsis thaliana seedlings to cadmium in relation to ammonium availability, Bull. Environ. Contam. Toxicol., 89 (2012) 1175–80.
  5. I. Smýkalová, B. Zámečníková, The relationship between salinity and cadmium stress in barley, Biol. Plant., 46 (2003) 269–273.
  6. M.J. McLaughlin, K.G. Tiller, T.A. Beech, M.K. Smart, Soil salinity causes elevated cadmium concentrations in field-grown potato tubers, J. Environ. Qual., 23 (1994) 1013–1018.
  7. E. Smolders, R.M. Lambrechts, M.J. McLaughlin, K.G. Tiller, Effect of soil solution chloride on Cd availability to Swiss chard, J. Environ. Qual., 27 (1997) 426–431.
  8. K. Weggler-Beaton, M.J. McLaughlin, R.D. Graham, Salinity increases cadmium uptake by wheat and Swiss chard from soil amended with biosolids, Aust. J. Soil. Res., 38 (2000) 37–46.
  9. K.H. Mühling, A. Läuchli, Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance, Plant Soil., 253 (2003) 219–231.
  10. K. Shah, R.G Kumar, S. Verma, R.S. Dubey, Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings, Plant Sci., 161 (2001) 1135–1144.
  11. R. Leyva, E. Sánchez-Rodríguez, J.J. Ríos, M.M. Rubio-Wilhelmi, L. Romero, J.M Ruiz, B. Blasco, Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress, Plant Sci., 181 (2011) 195–202.
  12. G.S. Shao, M.X. Chen, W.X. Wang, G.P. Zhang, The effect of salinity pretreatment on Cd accumulation and Cd-induced stress in BADH-transgenic and non transgenic rice seedlings, J. Plant Growth Regul., 27 (2008) 205–210.
  13. S. Boussiba, A. Rikin, A.E. Richmond, The role of abscisic acid in cross– adaptation of tobacco plants, Plant Physiol., 56 (1975) 337–339.
  14. C. Hafsi, A. Atia, A. Lakhdar, A. Debez, C. Abdelly, Differential responses in potassium absorption and use efficiencies in the halophytes catapodium rigidum and hordeum maritimum to various potassium concentrations in the medium, Plant Prod. Sci., 14 (2011) 135–140.
  15. A. Zayed, S. Gowthaman, N. Terry, Phytoaccumulation of trace elements by wetland plants: I. Duck weed, J. Environ. Qual., 27 (1998) 715–721.
  16. O.Y.L. Zhu, E.A.H. Pilon-Smits, L. Jouanin, N. Terry, Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance, Plant Physiol., 119 (1999) 73–79.
  17. M.E. Soltan, M.N. Rashed, Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations, Adv. Environ. Res., 7 (2003) 321–335.
  18. A. Baker, R. Brooks, Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry, Biorecovery, 1 (1989) 81–126.
  19. S.H. Kay, W.T. Haller, L.A. Garrard, Effects of heavy metals on water hyacinths (Eichornia crassipes), Aquat. Toxicol., 5 (1994) 117–28.
  20. Y. Kara, Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinale, Int. J. Environ. Sci. Tech., 2 (2005) 63–67.
  21. Y. Kara, Bioaccumulation of copper from contaminated wastewater by using Lemna minor (aquatic green plant), Bullet. Environ. Contam. Toxicol., 72 (2004) 467–471.
  22. R. Zurayk, B. Sukkariyah, R. Baalbaki, D.A. Ghanem, Chromium phytoaccumulation from solution by selected hydrophytes, Int. J. Phytoremed., 3 (2001) 335–350.
  23. M. Aslan, M.Y. Unlü, N. Türkmen, Y.Z. Yilmaz, Sorption of cadmium and effects on growth, protein content, and photosynthetic pigment composition of Nasturtium officinale R. Br. and Mentha aquatica L., Bull. Environ. Contam. Toxicol., 71 (2003) 323–329.
  24. S. Saygideger, M. Dogan, Influence of pH on lead uptake, chlorophyll and nitrogen content of Nasturtium officinale R. Br. and Mentha aquatica L., J. Environ Biol., 26 (2005) 753–759.
  25. S. Namdjoyan, S. Namdjoyan, H. Kermanian, Induction of phytochelatin and responses of antioxidants under cadmium stress in safflower (Carthamus tinctorius) seedlings, Turk. J. Bot., 36 (2012) 495–502.
  26. H.K. Lichtenthaler, Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Method. Enzymol., 148 (1987) 350–382.
  27. H. Alia, H. Hayashi, A. Sakamoto, N. Murata, Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine, Plant J., 16 (1998) 155–161.
  28. M.A. Bradford, Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing principles of protein-dye binding, Anal. Biochem., 72 (1976) 248–254.
  29. H. Costa, S.M. Gallego, M.L. Tomaro, Effects of UV-B radiation on antioxidant defense system in sunflower cotyledons, Plant Sci., 162 (2002) 939–945.
  30. I. Cakmak, D. Strbac, H. Marshner, Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds, J. Exp. Bot., 44 (1993) 127–132.
  31. G.X. Chen, K. Asada, Ascorbate peroxidase in pea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties, Plant Cell Physiol., 30 (1989) 987–998.
  32. M.M. Decleire, Y.P. Honorze, G.V. Van Roey, Activité des peroxydase, catalase et glycolate oxydase après traitement avec divers herbicides, Weed. Res., 22 (1982) 85–88.
  33. M.V. Rao, G. Paliyath, D.P. Ormrod, Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana, Plant. Physiol., 110 (1996) 125–136.
  34. Y. Kara, D. Basaran, I. Kara, A. Zeytunluoglu, H. Genc, Bioaccumulation of nickel by aquatic macrophyta Lemna minor (duckweed), Int. J. Agr. Biol., 5 (2003) 281–283.
  35. D. Aydin, O.F. Coskun. Comparison of EDTA-enhanced phytoextraction strategies with Nasturtium officinale (watercress) on an artificially arsenic contaminated water, Pak. J. Bot., 45 (2013) 1423–1429.
  36. L.J. Ma, C.M. Yu, X.M. Li, L.L. Wang, C.Y. Ma, S.Y. Tao, N. Bu, Pretreatment with NaCl induces tolerance of rice seedlings to subsequent Cd or Cd + NaCl stresses, Biol. Plant., 57 (2013) 567–570.
  37. K. Bauddh, R.P. Singh, Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil, Ecotox. Environ. Safety, 85 (2012) 13–22.
  38. N. Mohammadkhani, R. Heidari, Drought-induced accumulation of soluble sugars and proline in two maize varieties, World Applied Sci. J., 3 (2008) 448–453.
  39. S. Farouk, A.A. Mosa, A.A. Taha, M. Ibrahim Heba, A.M. El-Gahmery, Protective effect of humic acid and chitosan on radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium stress, J. Stress Physiol. Biochem., 7 (2011) 391 100–116.
  40. A. Mafakheri, A. Siosemardeh, B. Bahramnejad, P.C. Struik, Y. Sohrabi, Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars, Aust. J. Crop Sci., 5 (2011) 1255–1260.
  41. S. Muneer, J. Ahmad, M.I. Qureshi, Involvement of Fe nutrition in modulating oxidative stress and the expression of stress responsive proteins in leaves of Vigna radiata L., Aust. J. Crop Sci., 7 (2011) 1333–1342.
  42. G.P. Zhang, M. Fukami, H. Sekimoto, Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage, Field Crops Re., 77 (2002) 93–98.
  43. G. Dražić, N. Mihailović, Z. Stojanović, Cadmium toxicity: the effect on macro- and micro-nutrient contents in soybean seedlings, Biol. Plant., 48 (2004) 605–607.
  44. Y. Huang, K. Wei, J. Yang, F.Z.D. Guo-Ping, Interaction of salinity and cadmium stresses on mineral nutrients sodium, and cadmium accumulation in four barley genotypes, J. Zhejiang Univ. Science. B., 8 (2007) 476–485.
  45. H.M. Helal, S.A. Haque, A.B. Ramadan, E. Schnug, Salinity–heavy metal interactions as evaluated by soil extraction and plant analysis, Commun. Soil Sci. Plant Anal., 27 (1996) 1355–1361.
  46. H.A. Nasraoui, H. Gouia. Photosynthesis sensitivity to NH4-N change with nitrogen fertilizer type, Plant Soil Environ., 60 (2014) 274–279.
  47. W.X. Wei, P.E. Bilsborrow, P. Hooley, D.A. Fincham, E. Lombi, B.P. Forster, Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise, Plant Soil., 2 (2003) 183–191.
  48. S. Gallego, M. Benavides, M. Tomaro, Oxidative damage caused by cadmium chloride in sunflower (Helianthus annuus L.) plants, Phyt. Intern. J. Exp. Bot., 58 (1996) 41–52.
  49. K.H. Mühling, A. Läuchli, Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance, Plant Soil., 253 (2003) 219–231.
  50. X. Liu, S. Zhang, X.Q. Shan, P. Christie, Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzymes responses to cadmium and arsenate co-contamination, Eco. Environ. Safety, 68 (2007) 305–313.
  51. K.J. Dietz, Functions and responses of the leaf apoplast under stress, Progr. Bot., 58 (1996) 221–254.
  52. W. Maksymiec, Z. Krupa, The effects of short-term exposure to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana, Environ. Exp. Bot., 57 (2006) 187–194.
  53. Y.M. Tao, Y.Z. Chen, T. Tan, X.C. Liu, D.L. Yang, S.C. Liang, Comparison of antioxidant responses to cadmium and lead in Bruguiera gymnorrhiza seedlings, Biol. Plant., 56 (2012) 149–152.
  54. M. Shafi, J. Bakht, M.J. Hassan, M. Raziuddin, G.P. Zhang, Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.), Bull. Environ. Contam. Toxicol., 82 (2009) 772–776.
  55. S.R. Martin, M. Llugany, J. Barceló, C. Poschenrieder, Cadmium exclusion a key factor in differential Cd resistance in Thlaspi arvense ecotypes, Biol. Plant., 56 (2012) 729–734.
  56. H.Y. Guo, R. Tian, J.G. Zhu, H. Zhou, D.P. Pei, X.R. Wang, Combined cadmium and elevated ozone affect concentrations of cadmium and antioxidant systems in wheat under fully open-air conditions, J. Hazard. Mater., 209–210 (2012) 27–33.
  57. K. Welfare, A.R. Yeo, T.J. Flowers, Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L) varieties, Environ. Pollut., 120 (2002) 397–403.
  58. Y.M. Li, R.L. Chaney, A.A. Schneiter, Effect of soil chloride level on cadmium concentration in sunflower kernels, Plant Soil., 167 (1994) 275–280.
  59. L. Sanita di Toppi, R. Gabrielli, Response to cadmium in higher plants, Env. Exp. Bot., 41 (1999) 105–30.
  60. W. Ben Ammar, C. Mediouni, B. Tray, M.H. Ghorbel, F. Jemal, Glutathione and phytochelatin contents in tomato plants exposed to cadmium, Biol. Plant., 52 (2008) 314–320.
  61. D.E. Salt, R.D. Smith, I. Raskin, Phytoremediation, Annu. Rev. Plant Physiol. Plant Mol. Biol., 49 (1998) 643–668.