References

  1. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment – past, present and future
    (a review), Desalination, 228 (2008) 10–29.
  2. F.A. AlMarzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal, Application of capacitive deionisation in water desalination: a review, Desalination, 342 (2014) 3–15. doi: 10.1016/j.desal.2014.02.031.
  3. Y.S. Dzyazko, Y.M. Volfkovich, L.N. Ponomaryova, V.E. Sosenkin, V.V Trachevskii, V.N. Belyakov, Composite ionexchangers based on flexible resin containing zirconium hydrophosphate for electromembrane separation, J. Nanosci. Technol., 2 (2015) 43–49.
  4. Ö. Arar, Ü. Yüksel, N. Kabay, M. Yüksel, Various applications of electrodeionization (EDI) method for water treatment – a short review, Desalination, 342 (2014) 16–22.
  5. L. Alvarado, A. Chen, Electrodeionization: principles, strategies and applications, Electrochim. Acta, 132 (2014) 583–597.
  6. Y.S. Dzyazko, L.N. Ponomaryova, L.M. Rozhdestvenskaya, S.L. Vasilyuk, V.N. Belyakov, Electrodeionization of lowconcentrated multicomponent Ni2+-containing solutions using organic–inorganic ion-exchanger, Desalination, 342 (2014) 43–51.
  7. T.J. Welgemoed, C.F. Schutte, Capacitive Deionization Technology™: an alternative desalination solution, Desalination, 183 (2005) 327–340.
  8. Y.M. Vol’fkovich, A.A. Mikhalin, A.Y. Rychagov, Surface conductivity measurements for porous carbon electrodes, Russ. J. Electrochem., 49 (2013) 594–598.
  9. D.-W. Wang, F. Li, Z.-G. Chen, G.Q. Lu, H.-M. Cheng, Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor, Chem. Mater., 20 (2008) 7195–7200.
  10. C.J. Gabelich, T.D. Tran, I.H. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., 36 (2002) 3010–3019. doi: 10.1021/es0112745.
  11. C. Nie, L. Pan, H. Li, T. Chen, T. Lu, Z. Sun, Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization, J. Electroanal. Chem., 666 (2012) 85–88.
  12. H. Li, T. Lu, L. Pan, Y. Zhang, Z. Sun, Electrosorption behavior of graphene in NaCl solutions, J. Mater. Chem., 19 (2009) 6773–6779.
  13. H. Wang, D. Zhang, T. Yan, X. Wen, J. Zhang, L. Shi, Q. Zhong, Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization, J. Mater. Chem. A., 1 (2013) 11778–11789.
  14. G. Wang, Q. Dong, Z. Ling, C. Pan, C. Yu, J. Qiu, Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem., 22 (2012) 21819–21823.
  15. A. Amiri, G. Ahmadi, M. Shanbedi, M. Savari, S.N. Kazi, B.T. Chew, Microwave-assisted synthesis of highly-crumpled, few-layered graphene and nitrogen-doped graphene for use as high-performance electrodes in capacitive deionization, Sci. Rep., 5 (2015) 1–13.
  16. A. Aghigh, V. Alizadeh, H.Y. Wong, M.S. Islam, N. Amin, M. Zaman, Recent advances in utilization of graphene for filtration and desalination of water: a review, Desalination, 365 (2015) 389–397.
  17. H. Li, L. Pan, T. Lu, Y. Zhan, C. Nie, Z. Sun, A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization, J. Electroanal. Chem., 653 (2011) 40–44.
    doi:10.1016/j.jelechem.2011.01.012.
  18. Z. Peng, D. Zhang, L. Shi, T. Yan, High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization, J. Mater. Chem., 22 (2012) 6603–6612.
  19. M.S. Gaikwad, C. Balomajumder, Polymer coated capacitive deionization electrode for desalination:
    a mini review, Electrochem. Energy Technol., 2 (2016) 1–5.
  20. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, L. Pan, Review on carbonbased composite materials for capacitive deionization, RSC Adv., 5 (2015) 15205–15225.
  21. Z. Peng, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional micro/mesoporous carbon composites with carbon nanotube networks for capacitive deionization, Appl. Surf. Sci., 282 (2013) 965–973.
  22. H. Wang, L. Shi, T. Yan, J. Zhang, Q. Zhong, D. Zhang, Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization, J. Mater. Chem. A., 2 (2014) 4739–4750.
  23. X. Wen, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization, J. Mater. Chem. A., 1 (2013) 12334–12344.
  24. J.-B. Lee, K.-I.K.-K. Park, S.-W. Yoon, P.-Y. Park, K.-I.K.-K. Park, C.-W. Lee, Desalination performance of a carbon-based composite electrode, Desalination, 237 (2009) 155–161.
  25. D. Zhang, X. Wen, L. Shi, T. Yan, J. Zhang, Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale., 4 (2012) 5440–5446.
  26. T.-Y. Ying, K.-L. Yang, S. Yiacoumi, C. Tsouris, Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel, J. Colloid Interface Sci., 250 (2002) 18–27.
  27. M.T.Z. Myint, J. Dutta, Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination, 305 (2012) 24–30.
  28. L. Han, K.G. Karthikeyan, M.A. Anderson, J.J. Wouters, K.B. Gregory, Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization, Electrochim. Acta, 90 (2013) 573–581. doi: 10.1016/j.electacta.2012.11.069.
  29. R. Broséus, J. Cigana, B. Barbeau, C. Daines-Martinez, H. Suty, Removal of total dissolved solids, nitrates and ammonium ions from drinking water using charge-barrier capacitive deionisation, Desalination, 249 (2009) 217–223.
  30. S.-J. Seo, H. Jeon, J.K. Lee, G.-Y. Kim, D. Park, H. Nojima, J. Lee, S.-H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44 (2010) 2267–2275.
  31. H. Li, L. Zou, L. Pan, Z. Sun, Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Sep. Purif. Technol., 75 (2010) 8–14.
  32. L. Li, L. Zou, H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride, Carbon, 47 (2009) 775–781. doi: 10.1016/j.carbon.2008.11.012.
  33. Y.-J. Kim, J.-H. Choi, Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization, Water Res., 46 (2012) 6033–6039.
  34. A.M. Johnson, J. Newman, Desalting by means of porous carbon electrodes, J. Electrochem. Soc., 118 (1971) 510–517.
  35. Y.M. Vol’fkovich, V.M. Mazin, N.A. Urisson, Operation of double-layer capacitors based on carbon materials, Russ. J. Electrochem., 34 (1998) 740–746.
  36. K.-L. Yang, T.-Y. Ying, S. Yiacoumi, C. Tsouris, E.S. Vittoratos, Electrosorption of ions from aqueous solutions by carbon aerogel: an electrical double-layer model, Langmuir, 17 (2001) 1961–1969. doi: 10.1021/la001527s.
  37. Y.A.C. Jande, W.S. Kim, Predicting the lowest effluent concentration in capacitive deionization, Sep. Purif. Technol., 115 (2013) 224–230.
  38. Y. a C. Jande, W.S. Kim, Modeling the capacitive deionization batch mode operation for desalination, J. Ind. Eng. Chem., 20 (2014) 3356–3360. doi: 10.1016/j.jiec.2013.12.020.
  39. P.M. Biesheuvel, S. Porada, M. Levi, M.Z. Bazant, Attractive forces in microporous carbon electrodes for capacitive deionization, J. Solid State Electrochem., 18 (2014) 1365–1376. doi: 10.1007/s10008-014-2383-5.
  40. P.M. Biesheuvel, M.Z. Bazant, Nonlinear dynamics of capacitive charging and desalination by porous electrodes, Phys. Rev. E – Stat. Nonlinear, Soft Matter Phys., 81 (2010) 031502–12.
  41. A. Mani, M.Z. Bazant, Deionization shocks in microstructures, Phys. Rev. E – Stat. Nonlinear, Soft Matter Phys., 84 (2011) 61504–13. doi: 10.1103/PhysRevE.84.061504.
  42. P.M. Biesheuvel, Y. Fu, M.Z. Bazant, Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes, Russ. J. Electrochem., 48 (2012) 580–592. doi: 10.1134/S1023193512060031.
  43. Y.M. Volfkovich, V.E. Sosenkin, V.S. Bagotsky, Structural and wetting properties of fuel cell components, J. Power Sources., 195 (2010) 5429–5441.
  44. Y.M. Volfkovich, V.S. Bagotzky, V.E. Sosenkin, I.A. Blinov, The standard contact porosimetry, Colloids Surfaces A: Physicochem. Eng. Asp., 187 (2001) 349–365.
  45. Y.M. Volfkovich, V.S. Bagotzky, The method of standard porosimetry: 1. Principles and possibilities, J. Power Sources., 48 (1994) 327–338.
  46. Y.M. Volfkovich, I.A. Blinov, V.E. Sosenkin, V.V. Kulbachevsky, Porosimeter, 2001, U.S. patent 6,298,711.
  47. J. Rouquerol, G. Baron, R. Denoyel, H. Giesche, J. Groen, P. Klobes, P.E. Levitz, A.V. Neimark, S. Rigby, R. Skudas, K.S. William Sing, M. Thommes, K.K. Unger, Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report), Pure Appl. Chem., 84 (2011) 107–136.
  48. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, 1999.
  49. Y.M. Volfkovich, D.A. Bograchev, A.A. Mikhalin, V.S. Bagotsky, Supercapacitor carbon electrodes with high capacitance, J. Solid State Electrochem., 18 (2013) 1351–1363.
  50. Y.M. Volfkovich, D.A. Bograchev, A.Y. Rychagov, V.E. Sosenkin, M.Y. Chaika, Supercapacitors with carbon electrodes. Energy efficiency: modeling and experimental verification, J. Solid State Electrochem., 19 (2015) 2771–2779.
  51. Y.A. Chizmadzhev, V.S. Markin, M.R. Tarasevich, Y.G. Chirkov, J.J. Bikerman, Macrokinetics of Processes in Porous Media (Fuel Cells), Nauka, Moscow, 1971.
  52. G.E. Archie, Classification of carbonate reservoir rocks and petrophysical considerations, Am. Assoc. Pet. Geol. Bull., 36 (1952) 278–298.
  53. I.G. Gurevich, U.M. Volfkovich, V.S. Bagotskli, Liquid Porous Electrodes, Nauka Technika, Minsk, 1974.
  54. J. Newman, K.E. Thomas-Alyea, Electrochemical Systems, John Wiley & Sons, 2004.
  55. J. Newman, W. Tiedemann, Porous electrode theory with battery applications, AIChE J., 21 (1975) 25–41.
  56. B. Pillay, J. Newman, The influence of side reactions on the performance of electrochemical double layer capacitors, J. Electrochem. Soc., 143 (1996) 1806–1814.
  57. A.M. Johnson, J. Newman, Desalting by means of porous carbon electrodes, J. Electrochem. Soc., 118 (1971) 510–517.
  58. COMSOL Multiphysics, Modeling Guide, Version 3.5a, COMSOL AB, Burlington, MA, 2008.