References

  1. J.D. Harden, R.E. Pitt, Effects of soil components and liming effect of CCA-wood ash upon leaching of Cu, Cr, and As from CCA-wood ash in ultisol soil, Soil Sediment Contam., 22 (2013) 39–55.
  2. C.E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater., 223–224 (2012) 1–12.
  3. B. Mukhopadhyay, J. Sundquist, R.J. Schmitz, Removal of Cr(VI) from Cr-contaminated groundwater through electrochemical addition of Fe(II), J. Environ. Manage., 82 (2007) 66–76.
  4. Z. Xu, S. Bai, J. Liang, L. Zhou, Y. Lan, Photocatalytic reduction of Cr(VI) by citric and oxalic acids over biogenetic jarosite, Mater. Sci. Eng., C, 33 (2013) 2192–2196.
  5. X.R. Xu, H.B. Li, X.Y. Li, J.D. Gu, Reduction of hexavalent chromium by ascorbic acid in aqueous solutions, Chemosphere, 57 (2004) 609–613.
  6. S. Deiana, A. Premoli, C. Senette, Reduction of Cr(VI) by caffeic acid, Chemosphere, 67 (2007) 1919–1926.
  7. P.R. Wittbrodt, C.D. Palmer, Reduction of Cr(VI) in the presence of excess soil fulvic acid, Environ. Sci. Technol., 29 (1995) 255–263.
  8. S.J. Hug, H.U. Laubscher, B.R. James, Iron(III) catalyzed photochemical reduction of chromium(VI) by oxalate and citrate in aqueous solutions, Environ. Sci. Technol., 37 (1997) 160–170.
  9. S. Wei, J. Li, L. Liu, J. Shi, Z. Shao, Photocatalytic effect of iron corrosion products on reduction of hexavalent chromium by organic acids, J. Taiwan Inst. Chem. Eng., 45 (2014) 2659–2663.
  10. S. Velazquez-Peña, I. Linares-Hernández, V. Martínez-Miranda, C. Barrera-Díaz, B. Bilyeu, Azo dyes as electron transfer mediators in the electrochemical reduction of Cr(VI) using boron-doped diamond electrodes, Fuel, 110 (2013) 12–16.
  11. H.P. Cheng, Y.H. Huang, C. Lee, Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide, J. Hazard. Mater., 188 (2011) 357–362.
  12. C. Liu, F. Li, X. Li, G. Zhang, Y. Kuang, The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole, J. Mol. Catal. A: Chem., 252 (2006) 40–48.
  13. J. Guo, Y. Du, Y. Lan, J. Ma, Photodegradation mechanism and kinetics of methyl orange catalyzed by Fe(III) and citric acid, J. Hazard. Mater., 186 (2011) 2083–2088.
  14. S. Wei, L. Liu, H. Li, J. Shi, Y. Liu, Z. Shao, Photodecolourization of orange II with iron corrosion products and oxalic acid in aqueous solution, Appl. Catal., A, 417–418 (2012) 253–258.
  15. T.W. Ng, Q. Cai, C.K. Wong, A.T. Chow, P.K. Wong, Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: azo dye as electron donor for chromate reduction, J. Hazard. Mater., 182 (2010) 792–800.
  16. D. Mohan, C.U. Pittman, Activated carbons and low cost adsorbents for remediation of tri and hexavalent chromium from water, J. Hazard. Mater., 137 (2006) 762–811.
  17. A. Pandikumar, R. Ramaraj, Titanium dioxide–gold nanocomposite materials embedded in silicate sol–gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue, J. Hazard. Mater., 203–204 (2012) 244–250.
  18. S. Wei, H. Ren, J. Li, J. Shi, Z. Shao, Decolorization of organic dyes by zero-valent iron in the presence of oxalic acid and influence of photoirradiation and hexavalent chromium, J. Mol. Catal. A: Chem., 379 (2013) 309–314.
  19. F. Fu, W. Han, B. Tang, M. Hu, Z. Cheng, Insights into environmental remediation of heavy metal and organic pollutants: simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity, Chem. Eng. J., 232 (2013) 534–540.
  20. E.G. Solozhenko, N.M. Soboleva, V.V. Goncharuk, Decolourization of azodye solutions by Fenton’s oxidation, Water Res., 29 (1995) 2206–2210.
  21. J.A. Mielczarski, G.M. Atenas, E. Mielczarski, Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions, Appl. Catal., B, 56 (2005) 289–303.
  22. H. Zhang, Light and iron(III)-induced oxidation of chromium(III) in the presence of organic acids and manganese(II) in simulated atmospheric water, Atmos. Environ., 34 (2000) 1633–1640.
  23. M. Gaberell, Y. Chin, S.J. Hug, B. Sulzberger, Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron, Environ. Sci. Technol., 37 (2003) 4403–4409.
  24. M.C. Yin, Z.S. Li, J.H. Kou, Z.G. Zou, Mechanism investigation of visible light-Induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B System, Environ. Sci. Technol., 43 (2009) 8361–8366.
  25. L.S. Zhang, K.H. Wong, H.Y. Yip, C. Hu, J.C. Yu, C.Y. Chan, P.K. Wong, Effective photocatalytic disinfection of E. coli K-12 using AgBr–Ag–Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals, Environ. Sci. Technol., 44 (2010) 1392–1398.
  26. E.M. Rodríguez, B. Núñez, G. Fernández, F.J. Beltrán, Effects of some carboxylic acids on the Fe(III)/UVA photocatalytic oxidation of muconic acid in water, Appl. Catal., B, 89 (2009) 214–222.
  27. J. Jeong, J. Yoon, pH effect on OH radical production in photo/ ferrioxalate system, Water Res., 39 (2005) 2893–2900.
  28. Y. Zuo, Y. Deng, Iron(II)-catalyzed photochemical decomposition of oxalic acid and generation of H2O2 in atmospheric liquid phases, Chemosphere, 35 (1997) 2051–2058.
  29. J.K. Im, H.S. Son, K.D. Zoh, Perchlorate removal in Fe0/H2O systems: impact of oxygen availability and UV radiation, J. Hazard. Mater., 192 (2011) 457–464.