References
- J.D. Harden, R.E. Pitt, Effects of soil components and liming
effect of CCA-wood ash upon leaching of Cu, Cr, and As from
CCA-wood ash in ultisol soil, Soil Sediment Contam., 22 (2013)
39–55.
- C.E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, A review of
chemical, electrochemical and biological methods for aqueous
Cr(VI) reduction, J. Hazard. Mater., 223–224 (2012) 1–12.
- B. Mukhopadhyay, J. Sundquist, R.J. Schmitz, Removal of Cr(VI)
from Cr-contaminated groundwater through electrochemical
addition of Fe(II), J. Environ. Manage., 82 (2007) 66–76.
- Z. Xu, S. Bai, J. Liang, L. Zhou, Y. Lan, Photocatalytic reduction
of Cr(VI) by citric and oxalic acids over biogenetic jarosite,
Mater. Sci. Eng., C, 33 (2013) 2192–2196.
- X.R. Xu, H.B. Li, X.Y. Li, J.D. Gu, Reduction of hexavalent
chromium by ascorbic acid in aqueous solutions, Chemosphere,
57 (2004) 609–613.
- S. Deiana, A. Premoli, C. Senette, Reduction of Cr(VI) by caffeic
acid, Chemosphere, 67 (2007) 1919–1926.
- P.R. Wittbrodt, C.D. Palmer, Reduction of Cr(VI) in the presence
of excess soil fulvic acid, Environ. Sci. Technol., 29 (1995) 255–263.
- S.J. Hug, H.U. Laubscher, B.R. James, Iron(III) catalyzed
photochemical reduction of chromium(VI) by oxalate and
citrate in aqueous solutions, Environ. Sci. Technol., 37 (1997)
160–170.
- S. Wei, J. Li, L. Liu, J. Shi, Z. Shao, Photocatalytic effect of iron
corrosion products on reduction of hexavalent chromium by
organic acids, J. Taiwan Inst. Chem. Eng., 45 (2014) 2659–2663.
- S. Velazquez-Peña, I. Linares-Hernández, V. Martínez-Miranda,
C. Barrera-Díaz, B. Bilyeu, Azo dyes as electron transfer
mediators in the electrochemical reduction of Cr(VI) using
boron-doped diamond electrodes, Fuel, 110 (2013) 12–16.
- H.P. Cheng, Y.H. Huang, C. Lee, Decolorization of reactive dye
using a photo-ferrioxalate system with brick grain-supported
iron oxide, J. Hazard. Mater., 188 (2011) 357–362.
- C. Liu, F. Li, X. Li, G. Zhang, Y. Kuang, The effect of iron oxides and
oxalate on the photodegradation of 2-mercaptobenzothiazole, J.
Mol. Catal. A: Chem., 252 (2006) 40–48.
- J. Guo, Y. Du, Y. Lan, J. Ma, Photodegradation mechanism and
kinetics of methyl orange catalyzed by Fe(III) and citric acid, J.
Hazard. Mater., 186 (2011) 2083–2088.
- S. Wei, L. Liu, H. Li, J. Shi, Y. Liu, Z. Shao, Photodecolourization
of orange II with iron corrosion products and oxalic acid in
aqueous solution, Appl. Catal., A, 417–418 (2012) 253–258.
- T.W. Ng, Q. Cai, C.K. Wong, A.T. Chow, P.K. Wong,
Simultaneous chromate reduction and azo dye decolourization
by Brevibacterium casei: azo dye as electron donor for chromate
reduction, J. Hazard. Mater., 182 (2010) 792–800.
- D. Mohan, C.U. Pittman, Activated carbons and low cost
adsorbents for remediation of tri and hexavalent chromium
from water, J. Hazard. Mater., 137 (2006) 762–811.
- A. Pandikumar, R. Ramaraj, Titanium dioxide–gold
nanocomposite materials embedded in silicate sol–gel film
catalyst for simultaneous photodegradation of hexavalent
chromium and methylene blue, J. Hazard. Mater., 203–204
(2012) 244–250.
- S. Wei, H. Ren, J. Li, J. Shi, Z. Shao, Decolorization of organic
dyes by zero-valent iron in the presence of oxalic acid and
influence of photoirradiation and hexavalent chromium, J. Mol.
Catal. A: Chem., 379 (2013) 309–314.
- F. Fu, W. Han, B. Tang, M. Hu, Z. Cheng, Insights into
environmental remediation of heavy metal and organic
pollutants: simultaneous removal of hexavalent chromium and
dye from wastewater by zero-valent iron with ligand-enhanced
reactivity, Chem. Eng. J., 232 (2013) 534–540.
- E.G. Solozhenko, N.M. Soboleva, V.V. Goncharuk,
Decolourization of azodye solutions by Fenton’s oxidation,
Water Res., 29 (1995) 2206–2210.
- J.A. Mielczarski, G.M. Atenas, E. Mielczarski, Role of iron
surface oxidation layers in decomposition of azo-dye water
pollutants in weak acidic solutions, Appl. Catal., B, 56 (2005)
289–303.
- H. Zhang, Light and iron(III)-induced oxidation of chromium(III)
in the presence of organic acids and manganese(II) in simulated
atmospheric water, Atmos. Environ., 34 (2000) 1633–1640.
- M. Gaberell, Y. Chin, S.J. Hug, B. Sulzberger, Role of dissolved
organic matter composition on the photoreduction of Cr(VI) to
Cr(III) in the presence of iron, Environ. Sci. Technol., 37 (2003)
4403–4409.
- M.C. Yin, Z.S. Li, J.H. Kou, Z.G. Zou, Mechanism investigation
of visible light-Induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B System, Environ. Sci. Technol., 43 (2009)
8361–8366.
- L.S. Zhang, K.H. Wong, H.Y. Yip, C. Hu, J.C. Yu, C.Y. Chan,
P.K. Wong, Effective photocatalytic disinfection of E. coli K-12
using AgBr–Ag–Bi2WO6 nanojunction system irradiated by
visible light: the role of diffusing hydroxyl radicals, Environ.
Sci. Technol., 44 (2010) 1392–1398.
- E.M. Rodríguez, B. Núñez, G. Fernández, F.J. Beltrán, Effects
of some carboxylic acids on the Fe(III)/UVA photocatalytic
oxidation of muconic acid in water, Appl. Catal., B, 89 (2009)
214–222.
- J. Jeong, J. Yoon, pH effect on OH radical production in photo/
ferrioxalate system, Water Res., 39 (2005) 2893–2900.
- Y. Zuo, Y. Deng, Iron(II)-catalyzed photochemical decomposition
of oxalic acid and generation of H2O2 in atmospheric liquid
phases, Chemosphere, 35 (1997) 2051–2058.
- J.K. Im, H.S. Son, K.D. Zoh, Perchlorate removal in Fe0/H2O
systems: impact of oxygen availability and UV radiation, J.
Hazard. Mater., 192 (2011) 457–464.