References

  1. U. Pal, A. Sandoval, S.I. Madrid, G. Corro, V. Sharma, P. Mohanty, Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution, Chemosphere, 163 (2016) 142–152.
  2. M. Das, K.G. Bhattacharyya. Use of raw and acid-treated MnO2 as catalysts for oxidation of dyes in water: a case study with aqueous methylene blue, Chem. Eng. Commun., 202 (2015) 1375696091.
  3. S. Agarwal, H. Sadegh, M. Monajjemi, A.S. Hamdy, G.A.M. Ali, A.O.H. Memar, R. Shahryari-Ghoshekandi, I. Tyagi, V.K. Gupta, Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol, J. Mol. Liq., 218 (2016) 191–197.
  4. A.H.A. Dabwan, N. Yuki, N.A.M. Asri, H. Katsumata, T. Suzuki, S. Kaneco, Removal of methylene blue, rhodamine B and ammonium ion from aqueous solution by adsorption onto sintering porous materials prepared from coconut husk waste, Open J. Inorg. Non-metal. Mater., 5 (2015) 21–30.
  5. M.J. Andritsos, Con: Methylene Blue should not be used routinely for vasoplegia perioperatively, J. Cardiothor. Vasc. Anesth., 25 (2011) 739–743.
  6. T.S. Ahmed, Methylene blue toxicity following infusion to localize parathyroid adenoma, J. Laryngol. Otol., 120 (2006) 138–140.
  7. S.K. Sharma, 11. Hen Feather: A Remarkable Adsorbent for Dye Removal, John Wiley & Sons, Inc., 2015.
  8. J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han, Q. Xu, Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis, Chem. Eng. J., 259 (2015) 53–61.
  9. A. Mittal, M. Teotia, R.K. Soni, J. Mittal, Applications of egg shell and egg shell membrane as adsorbents: a review, J. Mol. Liq., 223 (2016) 376–387.
  10. J. Jimenez-Villarin, A. Serra-Clusellas, C. Martínez, A. Conesa, J. Garcia-Montaño, E. Moyano, Liquid chromatography coupled to tandem and high resolution mass spectrometry for the characterisation of ofloxacin transformation products after titanium dioxide photocatalysis, J. Chromatogr. A., 1443 (2016) 201–210.
  11. K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis, Appl. Catal., A, 489 (2015) 1–16.
  12. L. Li, J. Yan, T. Wang, Z.J. Zhao, J. Zhang, J. Gong, N. Guan, Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production, Nat. Commun., 6 (2015) 5881.
  13. P. Fernández-Ibáñez, M.I. Polo-López, S. Malato, S. Wadhwa, J.W.J. Hamilton, P.S.M. Dunlop, R.D. Sa, E. Magee, K.O. Shea, D.D. Dionysiou, Solar photocatalytic disinfection of water using titanium dioxide graphene composites, Chem. Eng. J., 261 (2015) 36–44.
  14. R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, C. Li, Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases, Energy Environ. Sci., 8 (2015) 2377–2382.
  15. A.N. Wang, Y. Teng, X.F. Hu, L.H. Wu, Y.J. Huang, Y.M. Luo, P. Christie, Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: degradation pathway, optimization of operating parameters and effects of soil properties, Sci. Total Environ., 541 (2016) 348.
  16. Y. Meng, Y. Wang, Q. Han, N. Xue, Y. Sun, B. Gao, Q. Li, Trihalomethane (THM) formation from synergic disinfection of biologically treated municipal wastewater: effect of ultraviolet (UV) irradiation and titanium dioxide photocatalysis on dissolve organic matter fractions, Chem. Eng. J., 303 (2016) 252–260.
  17. D. Dolat, S. Mozia, R.J. Wróbel, D. Moszyński, B. Ohtani, N. Guskos, A.W. Morawski, Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation, Appl. Catal., B, 162 (2015) 310–318.
  18. R. Sadowski, M. Strus, M. Buchalska, P.B. Heczko, W. Macyk, Visible light induced photocatalytic inactivation of bacteria by modified titanium dioxide films on organic polymers, Photochem. Photobiol. Sci., 14 (2015) 514.
  19. B. Chládková, E. Evgenidou, L. Kvítek, A. Panáček, R. Zbořil, P. Kovář, D. Lambropoulou, Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers, Environ. Sci. Pollut. Res., 22 (2015) 16514–16524.
  20. M.C. Wang, H.J. Lin, T.S. Yang, Characteristics and optical properties of iron ion (Fe3+)-doped titanium oxide thin films prepared by a sol–gel spin coating, J. Alloys Comp., 473 (2009) 394–400.
  21. Q.R. Deng, X.H. Xia, M.L. Guo, Y. Gao, G. Shao, Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity, Mater. Lett., 65 (2011) 2051–2054.
  22. H. Huang, H. Huang, Z. Lu, H. Peng, X. Ye, D.Y.C. Leung, Enhanced degradation of gaseous benzene under vacuum ultraviolet (VUV) irradiation over TiO2 modified by transition metals, Chem. Eng. J., 259 (2015) 534–541.
  23. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  24. Y. Hou, X. Wang, L. Wu, A. Zhengxin Ding, X. Fu, Efficient decomposition of benzene over a β-Ga2O3 photocatalyst under ambient conditions, Environ. Sci. Technol., 40 (2006) 5799.
  25. R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage, Nat. Mater., 14 (2015) 271.
  26. F. Perreault, D.F.A. Fonseca, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev., 46 (2015) 5861.
  27. A.G. Arani, E. Haghparast, Z.K. Maraghi, S. Amir, Static stress analysis of carbon nanotube reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electro-magnetic fields, Composites Part B., 68 (2015) 136–145.
  28. S.S.C.S. Sahu, A comparative study on heat transfer enhancement of low volume concentration of Al2O3-water and CNT-water nanofluids in laminar regime using helical screw tape inserts, Chem. Eng. Process. Process Intensif., 88 (2014) 78–88.
  29. C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong, D.H. Min. Biomedical applications of graphene and graphene oxide, Accounts Chem. Res., 46 (2013) 2211.
  30. V. Štengl, D. Popelková, P. Vláčil. TiO2–graphene nanocomposite as high performance photocatalysts, J. Phys. Chem. C., 115 (2011) 25209–25218.
  31. M. Naushad, A. Mittal, M. Rathore, V. Gupta, Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger, Desal. Wat. Treat., 54 (2015) 2883–2890.
  32. A. Mittal, R. Ahmad, I. Hasan, Iron oxide-impregnated dextrin nanocomposite: synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution, Desal. Wat. Treat., 57 (2016) 15133–15145.
  33. H. Zhang, P. Xu, G. Du, Z. Chen, K. Oh, D. Pan, Z. Jiao, A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange, Nano Res., 4 (2011) 274–283.
  34. Y. Zhang, Z.R. Tang, X. Fu, Y.J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano., 4 (2010) 7303–7314.
  35. W. Fan, Q. Lai, Q. Zhang, Y. Wang, Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution, J. Phys. Chem. C., 115 (2011) 10694–10701.
  36. J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater., 24 (2012) 1084.
  37. J. Zhong, J. Wang, L. Tao, M. Gong, L. Zhimin, Y. Chen, Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: kinetic model and degradation mechanisms, J. Hazard. Mater., 139 (2007) 323.
  38. Y. Ding, J. Zhu, C. Yang, S. Chen, Adsorption equilibrium, kinetics and thermodynamics of dichloroacetic acid from aqueous solution using mesoporous carbon, Environ. Technol., 35 (2014) 1962.
  39. Y. Ding, J. Zhu, D. Ji, Y. Cao, X. Ling, W. Chen. Enhancing adsorption efficiency of dichloroacetic acid onto mesoporous carbons: procedure optimization, mechanism and characterization, J. Colloid Interface Sci., 452 (2015) 134–140.
  40. K.S. Walton, R.Q. Snurr, Applicability of the BET method for determining surface areas of microporous metal-organic frameworks, J. Am. Chem. Soc., 129 (2007) 8552.
  41. C.H. Cho, D.K. Kim, D.H. Kim, Photocatalytic activity of monodispersed spherical TiO2 particles with different crystallization routes, J. Am. Ceram. Soc., 86 (2010) 1138–1145.
  42. Y. Liao, X. Wang, Y. Ma, J. Li, T. Wen, L. Jia, Z. Zhong, L. Wang, D. Zhang, New mechanistic insight of low temperature crystallization of anodic TiO2 nanotube array in water, Cryst. Growth Des., 16 (2016) 1786–1791.
  43. L. Velasco, J. Parra, C. Ania, Phenol adsorption and photooxidation on porous carbon/titania composites, Adsorpt. Sci. Technol., 28 (2010) 727–738.
  44. W. Wei, C. Yu, Q. Zhao, G. Li, Y. Wan, Improvement of the visible-light photocatalytic performance of TiO2 by carbon mesostructures, Chemistry, 19 (2013) 566.
  45. B. Kramer, Electronic structure and optical properties of amorphous germanium and silicon, Phys. Status Solidi, 47 (1971) 501–510.
  46. X.Y. Zhang, H.P. Li, X.L. Cui, Y. Lin, Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem., 20 (2010) 2801–2806.
  47. W.K. Jo, Y. Won, I. Hwang, R.J. Tayade, Enhanced photocatalytic degradation of aqueous nitrobenzene using graphitic carbon–TiO2 composites, Ind. Eng. Chem. Res., 53 (2014) 3455–3461.
  48. Y. Liu, C. Xie, J. Li, T. Zou, D. Zeng, New insights into the relationship between photocatalytic activity and photocurrent of TiO2/WO3 nanocomposite, Appl. Catal., A, 433–434 (2012) 81–87.