1. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment: Principles and Design, John Wiley & Sons, Hoboken, New Jersey, 2012.
  2. A.D. Nikolaou, S.K. Golfinopoulos, T.D. Lekkas, M.N. Kostopoulou, DBP levels in chlorinated drinking water: effect of humic substances, Environ. Monit. Assess., 93 (2004) 301–319.
  3. A. Nikolaou, T. Lekkas, S. Golfinopoulos, Kinetics of the formation and decomposition of chlorination by-products in surface waters, Chem. Eng. J., 100 (2004) 139–148.
  4. A.D. Nikolaou, S.K. Golfinopoulos, T.D. Lekkas, Formation of organic by-products during chlorination of natural waters, J. Environ. Monit., 4 (2002) 910–916.
  5. H. Gallard, U. Von Gunten, Chlorination of natural organic matter: kinetics of chlorination and of THM formation, Water Res., 36 (2002) 65–74.
  6. P. Singer, Humic substances as precursors for potentially harmful disinfection by-products, Water Sci. Technol., 40 (1999) 25–30.
  7. P.C. Singer, A. Obolensky, A. Greiner, DBPs in chlorinated North Carolina drinking waters, J. AWWA, 87 (1995) 83–92.
  8. J.J. Rook, Formation of haloforms during chlorination of natural waters, J. Water Treat. Exam., 23 (1974) 234–243.
  9. F. Frimmel, J. Jahnel, Formation of Haloforms in Drinking Water, Haloforms and Related Compounds in Drinking Water, Handbook of Environmental Chemistry, Springer-Verlag, Berlin Heidelberg, Germany, 2003, pp. 1–19.
  10. H. Arora, M.W. LeChevallier, K.L. Dixon, DBP occurrence survey, J. AWWA, 89 (1997) 60–68.
  11. P.C. Singer, Control of disinfection by-products in drinking water, J. Environ. Eng., 120 (1994) 727–744.
  12. C. Legay, M.J. Rodriguez, J.B. Sérodes, P. Levallois, Estimation of chlorination by-products presence in drinking water in epidemiological studies on adverse reproductive outcomes: a review, Sci. Total Environ., 408 (2010) 456–472.
  13. M.B. Toledano, M.J. Nieuwenhuijsen, N. Best, H. Whitaker, P. Hambly, C. de Hoogh, J. Fawell, L. Jarup, P. Elliott, Relation of trihalomethane concentrations in public water supplies to stillbirth and birth weight in three water regions in England, Environ. Health Perspect., 113 (2005) 225–232.
  14. R.M. Clark, R.C. Thurnau, M. Sivaganesan, P. Ringhand, Predicting the formation of chlorinated and brominated by-products, J. Environ. Eng., 127 (2001) 493–501.
  15. D.D. Gang, R.L. SEGAR, T.E. Clevenger, S.K. Banerji, Using chlorine demand to predict TTHM and HAA9 formation, J. AWWA, 94 (2002) 76–86.
  16. J. Sohn, G. Amy, J. Cho, Y. Lee, Y. Yoon, Disinfectant decay and disinfection by-products formation model development: chlorination and ozonation by-products, Water Res., 38 (2004) 2461–2478.
  17. H. Chang, H. Tung, C. Chao, G. Wang, Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan, Environ. Monit. Assess., 162 (2010) 237–250.
  18. A.R. Pardakhti, G.R.N. Bidhendi, A. Torabian, A. Karbassi, M. Yunesian, Comparative cancer risk assessment of THMs in drinking water from well water sources and surface water sources, Environ. Monit. Assess., 179 (2011) 499–507.
  19. S. Kumar, S. Forand, G. Babcock, S.-A. Hwang, Total trihalomethanes in public drinking water supply and birth outcomes: a cross-sectional study, Maternal Child Health J., 18 (2014) 996–1006.
  20. M.C. Lee, V.L. Snoeyink, J.C. Crittenden, Activated carbon adsorption of humic substances, J. AWWA, 73 (1981) 440–446.
  21. W.J. Weber Jr., T.C. Voice, A. Jodellah, Adsorption of humic substances: the effects of heterogeneity and system characteristics, J. AWWA, 75 (1983) 612–619.
  22. J.C. Crittenden, J.K. Berrigan, D.W. Hand, B. Lykins, Design of rapid fixed-bed adsorption tests for nonconstant diffusivities, J. Environ. Eng., 113 (1987) 243–259.
  23. P.S. Kim, J.M. Symons, Using anion exchange resins to remove THM precursors, J. AWWA, 83 (1991) 61–68.
  24. H. Wang, X. Yuan, Z. Wu, L. Wang, X. Peng, L. Leng, G. Zeng, Removal of basic dye from aqueous solution using Cinnamomum camphora sawdust: kinetics, isotherms, thermodynamics, and mass-transfer processes, Sep. Sci. Technol., 49 (2014) 2689–2699.
  25. H. Wang, X. Yuan, G. Zeng, L. Leng, X. Peng, K. Liao, L. Peng, Z. Xiao, Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent, Environ. Sci. Pollut. Res. Int., 21 (2014) 11552–11564.
  26. Y. Wu, H. Luo, H. Wang, L. Zhang, P. Liu, L. Feng, Fast adsorption of nickel ions by porous graphene oxide/sawdust composite and reuse for phenol degradation from aqueous solutions, J. Colloid Interface Sci., 436 (2014) 90–98.
  27. L. Leng, X. Yuan, H. Huang, J. Shao, H. Wang, X. Chen, G. Zeng, Bio-char derived from sewage sludge by liquefaction: characterization and application for dye adsorption, Appl. Surf. Sci., 346 (2015) 223–231.
  28. L.J. Leng, X.Z. Yuan, H.Z. Huang, H. Wang, Z.B. Wu, L.H. Fu, X. Peng, X.H. Chen, G.M. Zeng, Characterization and application of bio-chars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge, Fuel Process. Technol., 129 (2015) 8–14.
  29. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  30. A. Kara, E. Demirbel, N. Tekin, B. Osman, N. Beşirli, Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies, J. Hazard. Mater., 286 (2015) 612–623.
  31. A. Kara, Adsorption of Cr(VI) ions onto poly(ethylene glycol dimethacrylate‐1‐vinyl‐1,2,4‐triazole), J. Appl. Polym. Sci., 114 (2009) 948–955.
  32. M. Ghaedi, A. Ghaedi, E. Negintaji, A. Ansari, A. Vafaei, M. Rajabi, Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree, J. Ind. Eng. Chem., 20 (2014) 1793–1803.
  33. A. Jain, V. Gupta, A. Bhatnagar, Suhas, A comparative study of adsorbents prepared from industrial wastes for removal of dyes, Sep. Sci. Technol., 38 (2003) 463–481.
  34. V.K. Gupta, R. Jain, M. Shrivastava, A. Nayak, Equilibrium and thermodynamic studies on the adsorption of the dye tartrazine onto waste “coconut husks” carbon and activated carbon, J. Chem. Eng. Data, 55 (2010) 5083–5090.
  35. R. Liu, B. Zhang, D. Mei, H. Zhang, J. Liu, Adsorption of methyl violet from aqueous solution by halloysite nanotubes, Desalination, 268 (2011) 111–116.
  36. M. Ghaedi, A. Ansari, M. Habibi, A. Asghari, Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study, J. Ind. Eng. Chem., 20 (2014) 17–28.
  37. M. Ghaedi, A. Ansari, R. Sahraei, ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption, Spectrochim. Acta, Part A, 114 (2013) 687–694.
  38. T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed‐bed adsorbers, AIChE J., 20 (1974) 228–238.
  39. F. Haghseresht, G. Lu, Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents, Energy Fuels, 12 (1998) 1100–1107.
  40. K. Fytianos, E. Voudrias, E. Kokkalis, Sorption–desorption behaviour of 2,4-dichlorophenol by marine sediments, Chemosphere, 40 (2000) 3–6.
  41. X.S. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu2+ on rice bran, Process Biochem., 40 (2005) 677–680.
  42. C. Pearce, J. Lloyd, J. Guthrie, The removal of colour from textile wastewater using whole bacterial cells: a review, Dyes Pigm., 58 (2003) 179–196.
  43. G. Akkaya, A. Özer, Biosorption of Acid Red 274 (AR 274) on Dicranella varia: determination of equilibrium and kinetic model parameters, Process Biochem., 40 (2005) 3559–3568.
  44. M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces, Chem. Rev., 60 (1960) 235–241.
  45. M. Dubinin, Modern state of the theory of volume filling of micropore adsorbents during adsorption of gases and steams on carbon adsorbents, Zh. Fiz. Khim., 39 (1965) 1305–1317.
  46. L. Radushkevich, Potential theory of sorption and structure of carbons, Zh. Fiz. Khim., 23 (1949) 1410–1420.
  47. M. Ghaedi, A. Ansari, F. Bahari, A. Ghaedi, A. Vafaei, A hybrid artificial neural network and particle swarm optimization for prediction of removal of hazardous dye brilliant green from aqueous solution using zinc sulfide nanoparticle loaded on activated carbon, Spectrochim. Acta, Part A, 137 (2015) 1004–1015.
  48. D. Ruthven, K. Loughlin, The effect of crystallite shape and size distribution on diffusion measurements in molecular sieves, Chem. Eng. Sci., 26 (1971) 577–584.
  49. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  50. J.J. Pignatello, F.J. Ferrandino, L.Q. Huang, Elution of aged and freshly added herbicides from a soil, Environ. Sci. Technol., 27 (1993) 1563–1571.
  51. E. Bulut, M. Özacar, İ.A. Şengil, Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design, Microporous Mesoporous Mater., 115 (2008) 234–246.
  52. M. Ghaedi, A.H. Jah, S. Khodadoust, R. Sahraei, A. Daneshfar, A. Mihandoost, M. Purkait, Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow, Spectrochim. Acta, Part A, 90 (2012) 22–27.