References
- J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G.
Tchobanoglous, MWH’s Water Treatment: Principles and
Design, John Wiley & Sons, Hoboken, New Jersey, 2012.
- A.D. Nikolaou, S.K. Golfinopoulos, T.D. Lekkas, M.N.
Kostopoulou, DBP levels in chlorinated drinking water:
effect of humic substances, Environ. Monit. Assess., 93 (2004)
301–319.
- A. Nikolaou, T. Lekkas, S. Golfinopoulos, Kinetics of the
formation and decomposition of chlorination by-products in
surface waters, Chem. Eng. J., 100 (2004) 139–148.
- A.D. Nikolaou, S.K. Golfinopoulos, T.D. Lekkas, Formation of
organic by-products during chlorination of natural waters, J.
Environ. Monit., 4 (2002) 910–916.
- H. Gallard, U. Von Gunten, Chlorination of natural organic
matter: kinetics of chlorination and of THM formation, Water
Res., 36 (2002) 65–74.
- P. Singer, Humic substances as precursors for potentially
harmful disinfection by-products, Water Sci. Technol., 40 (1999)
25–30.
- P.C. Singer, A. Obolensky, A. Greiner, DBPs in chlorinated
North Carolina drinking waters, J. AWWA, 87
(1995) 83–92.
- J.J. Rook, Formation of haloforms during chlorination of natural
waters, J. Water Treat. Exam., 23 (1974) 234–243.
- F. Frimmel, J. Jahnel, Formation of Haloforms in Drinking
Water, Haloforms and Related Compounds in Drinking Water,
Handbook of Environmental Chemistry, Springer-Verlag,
Berlin Heidelberg, Germany, 2003, pp. 1–19.
- H. Arora, M.W. LeChevallier, K.L. Dixon, DBP occurrence
survey, J. AWWA, 89 (1997) 60–68.
- P.C. Singer, Control of disinfection by-products in drinking
water, J. Environ. Eng., 120 (1994) 727–744.
- C. Legay, M.J. Rodriguez, J.B. Sérodes, P. Levallois, Estimation
of chlorination by-products presence in drinking water in
epidemiological studies on adverse reproductive outcomes: a
review, Sci. Total Environ., 408 (2010) 456–472.
- M.B. Toledano, M.J. Nieuwenhuijsen, N. Best, H. Whitaker, P.
Hambly, C. de Hoogh, J. Fawell, L. Jarup, P. Elliott, Relation
of trihalomethane concentrations in public water supplies to
stillbirth and birth weight in three water regions in England,
Environ. Health Perspect., 113 (2005) 225–232.
- R.M. Clark, R.C. Thurnau, M. Sivaganesan, P. Ringhand,
Predicting the formation of chlorinated and brominated
by-products, J. Environ. Eng., 127 (2001) 493–501.
- D.D. Gang, R.L. SEGAR, T.E. Clevenger, S.K. Banerji, Using
chlorine demand to predict TTHM and HAA9 formation, J. AWWA, 94 (2002) 76–86.
- J. Sohn, G. Amy, J. Cho, Y. Lee, Y. Yoon, Disinfectant decay
and disinfection by-products formation model development:
chlorination and ozonation by-products, Water Res., 38 (2004)
2461–2478.
- H. Chang, H. Tung, C. Chao, G. Wang, Occurrence of haloacetic
acids (HAAs) and trihalomethanes (THMs) in drinking water of
Taiwan, Environ. Monit. Assess., 162 (2010) 237–250.
- A.R. Pardakhti, G.R.N. Bidhendi, A. Torabian, A. Karbassi,
M. Yunesian, Comparative cancer risk assessment of THMs
in drinking water from well water sources and surface water
sources, Environ. Monit. Assess., 179 (2011) 499–507.
- S. Kumar, S. Forand, G. Babcock, S.-A. Hwang, Total
trihalomethanes in public drinking water supply and birth
outcomes: a cross-sectional study, Maternal Child Health J., 18
(2014) 996–1006.
- M.C. Lee, V.L. Snoeyink, J.C. Crittenden, Activated carbon
adsorption of humic substances, J. AWWA, 73
(1981) 440–446.
- W.J. Weber Jr., T.C. Voice, A. Jodellah, Adsorption of
humic substances: the effects of heterogeneity and system
characteristics, J. AWWA, 75 (1983) 612–619.
- J.C. Crittenden, J.K. Berrigan, D.W. Hand, B. Lykins, Design of
rapid fixed-bed adsorption tests for nonconstant diffusivities, J.
Environ. Eng., 113 (1987) 243–259.
- P.S. Kim, J.M. Symons, Using anion exchange resins to remove
THM precursors, J. AWWA, 83 (1991) 61–68.
- H. Wang, X. Yuan, Z. Wu, L. Wang, X. Peng, L. Leng, G. Zeng,
Removal of basic dye from aqueous solution using Cinnamomum
camphora sawdust: kinetics, isotherms, thermodynamics, and
mass-transfer processes, Sep. Sci. Technol., 49 (2014) 2689–2699.
- H. Wang, X. Yuan, G. Zeng, L. Leng, X. Peng, K. Liao, L. Peng,
Z. Xiao, Removal of malachite green dye from wastewater by
different organic acid-modified natural adsorbent: kinetics,
equilibriums, mechanisms, practical application, and disposal
of dye-loaded adsorbent, Environ. Sci. Pollut. Res. Int., 21 (2014)
11552–11564.
- Y. Wu, H. Luo, H. Wang, L. Zhang, P. Liu, L. Feng, Fast
adsorption of nickel ions by porous graphene oxide/sawdust
composite and reuse for phenol degradation from aqueous
solutions, J. Colloid Interface Sci., 436 (2014) 90–98.
- L. Leng, X. Yuan, H. Huang, J. Shao, H. Wang, X. Chen, G.
Zeng, Bio-char derived from sewage sludge by liquefaction:
characterization and application for dye adsorption, Appl. Surf.
Sci., 346 (2015) 223–231.
- L.J. Leng, X.Z. Yuan, H.Z. Huang, H. Wang, Z.B. Wu, L.H. Fu, X.
Peng, X.H. Chen, G.M. Zeng, Characterization and application
of bio-chars from liquefaction of microalgae, lignocellulosic
biomass and sewage sludge, Fuel Process. Technol., 129 (2015)
8–14.
- M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption
of methylene blue on low-cost adsorbents: a review, J. Hazard.
Mater., 177 (2010) 70–80.
- A. Kara, E. Demirbel, N. Tekin, B. Osman, N. Beşirli, Magnetic
vinylphenyl boronic acid microparticles for Cr(VI) adsorption:
kinetic, isotherm and thermodynamic studies, J. Hazard.
Mater., 286 (2015) 612–623.
- A. Kara, Adsorption of Cr(VI) ions onto poly(ethylene glycol
dimethacrylate‐1‐vinyl‐1,2,4‐triazole), J. Appl. Polym. Sci., 114
(2009) 948–955.
- M. Ghaedi, A. Ghaedi, E. Negintaji, A. Ansari, A. Vafaei, M.
Rajabi, Random forest model for removal of bromophenol blue
using activated carbon obtained from Astragalus bisulcatus tree,
J. Ind. Eng. Chem., 20 (2014) 1793–1803.
- A. Jain, V. Gupta, A. Bhatnagar, Suhas, A comparative study
of adsorbents prepared from industrial wastes for removal of
dyes, Sep. Sci. Technol., 38 (2003) 463–481.
- V.K. Gupta, R. Jain, M. Shrivastava, A. Nayak, Equilibrium and
thermodynamic studies on the adsorption of the dye tartrazine
onto waste “coconut husks” carbon and activated carbon, J.
Chem. Eng. Data, 55 (2010) 5083–5090.
- R. Liu, B. Zhang, D. Mei, H. Zhang, J. Liu, Adsorption of
methyl violet from aqueous solution by halloysite nanotubes,
Desalination, 268 (2011) 111–116.
- M. Ghaedi, A. Ansari, M. Habibi, A. Asghari, Removal
of malachite green from aqueous solution by zinc oxide
nanoparticle loaded on activated carbon: kinetics and isotherm
study, J. Ind. Eng. Chem., 20 (2014) 17–28.
- M. Ghaedi, A. Ansari, R. Sahraei, ZnS:Cu nanoparticles
loaded on activated carbon as novel adsorbent for kinetic,
thermodynamic and isotherm studies of Reactive Orange 12
and Direct yellow 12 adsorption, Spectrochim. Acta, Part A, 114
(2013) 687–694.
- T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models
for fixed‐bed adsorbers, AIChE J., 20 (1974) 228–238.
- F. Haghseresht, G. Lu, Adsorption characteristics of phenolic
compounds onto coal-reject-derived adsorbents, Energy Fuels,
12 (1998) 1100–1107.
- K. Fytianos, E. Voudrias, E. Kokkalis, Sorption–desorption
behaviour of 2,4-dichlorophenol by marine sediments,
Chemosphere, 40 (2000) 3–6.
- X.S. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu2+
on rice bran, Process Biochem., 40 (2005) 677–680.
- C. Pearce, J. Lloyd, J. Guthrie, The removal of colour from textile
wastewater using whole bacterial cells: a review, Dyes Pigm., 58
(2003) 179–196.
- G. Akkaya, A. Özer, Biosorption of Acid Red 274 (AR 274) on
Dicranella varia: determination of equilibrium and kinetic model
parameters, Process Biochem., 40 (2005) 3559–3568.
- M. Dubinin, The potential theory of adsorption of gases and
vapors for adsorbents with energetically nonuniform surfaces,
Chem. Rev., 60 (1960) 235–241.
- M. Dubinin, Modern state of the theory of volume filling of
micropore adsorbents during adsorption of gases and steams
on carbon adsorbents, Zh. Fiz. Khim., 39 (1965) 1305–1317.
- L. Radushkevich, Potential theory of sorption and structure of
carbons, Zh. Fiz. Khim., 23 (1949) 1410–1420.
- M. Ghaedi, A. Ansari, F. Bahari, A. Ghaedi, A. Vafaei, A hybrid
artificial neural network and particle swarm optimization
for prediction of removal of hazardous dye brilliant green
from aqueous solution using zinc sulfide nanoparticle loaded
on activated carbon, Spectrochim. Acta, Part A, 137 (2015)
1004–1015.
- D. Ruthven, K. Loughlin, The effect of crystallite shape and size
distribution on diffusion measurements in molecular sieves,
Chem. Eng. Sci., 26 (1971) 577–584.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- J.J. Pignatello, F.J. Ferrandino, L.Q. Huang, Elution of aged and
freshly added herbicides from a soil, Environ. Sci. Technol., 27
(1993) 1563–1571.
- E. Bulut, M. Özacar, İ.A. Şengil, Adsorption of malachite
green onto bentonite: equilibrium and kinetic studies and
process design, Microporous Mesoporous Mater., 115 (2008)
234–246.
- M. Ghaedi, A.H. Jah, S. Khodadoust, R. Sahraei, A. Daneshfar,
A. Mihandoost, M. Purkait, Cadmium telluride nanoparticles
loaded on activated carbon as adsorbent for removal of sunset
yellow, Spectrochim. Acta, Part A, 90 (2012) 22–27.