1. J.-W. Shi, H.-J. Cui, X. Zong, S. Chen, J. Chen, B. Xu, W. Yang, L. Wang, M.-L. Fu, Facile one-pot synthesis of Eu, N-codoped mesoporous titania microspheres with yolk-shell structure and high visible-light induced photocatalytic performance, Appl. Catal. A, 435 (2012) 86–92.
  2. Y. Wang, M. Zhong, F. Chen, J. Yang, Visible light photocatalytic activity of TiO2/D-PVA for MO degradation, Appl. Catal. B, 90 (2009) 249–254.
  3. S.M. Ibrahim, A.K. Masrom, B. Mazinani, S. Radiman, F.M. Jamil, A. Beitollahi, N. Negishi, N. Yahya, Mesoporous titania photocatalyst: effect of relative humidity and aging on the preparation of mesoporous titania and on its photocatalytic activity performance, Res. Chem. Intermed., 39 (2013) 1003–1014.
  4. B. Mazinani, A. Beitollahi, S. Radiman, A.K. Masrom, S.M. Ibrahim, J. Javadpour, F.M.D. Jamil, The effects of hydrothermal temperature on structural and photocatalytic properties of ordered large pore size TiO2–SiO2 mesostructured composite, J. Alloys Compd., 519 (2012) 72–76.
  5. H.B. Yener, erife Helvac, Effect of synthesis temperature on the structural properties and photocatalytic activity of TiO2/SiO2 composites synthesized using rice husk ash as a SiO2 source, Sep. Purif. Technol., 140 (2015) 84–93.
  6. T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito, A patterned TiO2 (anatase)/TiO2 (rutile) bilayer type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity, Angew. Chem., 114 (2002) 2935–2937.
  7. S. Pal, A.M. Laera, A. Licciulli, M. Catalano, A. Taurino, Biphase TiO2 microspheres with enhanced photocatalytic activity, Ind. Eng. Chem. Res., 53 (2014) 7931–7938.
  8. J. Yang, J. Zhang, L. Zhu, S. Chen, Y. Zhang, Y. Tang, Y. Zhu, Y. Li, Synthesis of nano titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity, J. Hazard. Mater., 137 (2006) 952–958.
  9. X.Z. Li, F.B. Li, Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol., 35 (2001) 2381–2387.
  10. K. Hofstadler, R. Bauer, S. Novalic, G. Heisler, New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol, Environ. Sci. Technol., 28 (1994) 670–674.
  11. X.Z. Li, H. Liu, L.F. Cheng, H.J. Tong, Photocatalytic oxidation using a new catalyst TiO2 microsphere for water and wastewater treatment, Environ. Sci. Technol., 37 (2003) 3989–3994.
  12. F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming, Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation, Phys. Chem. Chem. Phys., 7 (2005) 385–393.
  13. D. Chen, F. Huang, Y.B. Cheng, R.A. Caruso, Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high performance dye sensitized solar cells, Adv. Mater., 21 (2009) 2206–2210.
  14. D.M. Antonelli, J.Y. Ying, Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method, Angew. Chem. Int. Ed., 34 (1995) 2014–2017.
  15. J.-M. Wu, Photodegradation of rhodamine B in water assisted by titania nanorod thin films subjected to various thermal treatments, Environ. Sci. Technol., 41 (2007) 1723–1728.
  16. I.A.W. Tan, A. La Ahmad, B.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154 (2008) 337–346.
  17. C. Reitz, J. Reinacher, P. Hartmann, T. Brezesinski, Polymertemplated ordered large-pore mesoporous anatase–rutile TiO2: Ta nanocomposite films: microstructure, electrical conductivity, and photocatalytic and photoelectrochemical properties, Catal. Today, 225 (2014) 55–63.
  18. D. Grosso, G.J.A.A. De Soler-Illia, F. Babonneau, C. Sanchez, P.A. Albouy, A. Brunet-Bruneau, A.R. Balkenende, Highly organized mesoporous titania thin films showing monooriented 2D hexagonal channels, Adv. Mater., 13 (2001) 1085–1090.
  19. E. Beyers, P. Cool, E.F. Vansant, Stabilisation of mesoporous TiO2 by different bases influencing the photocatalytic activity, Microporous Mesoporous Mater., 99 (2007) 112–117.
  20. B. Mazinani, A. Beitollahi, A.K. Masrom, N. Yahya, T.S.Y. Choong, S.M. Ibrahim, J. Javadpour, Characterization and evaluation of the photocatalytic properties of wormhole-like mesoporous silica incorporating TiO2, prepared using different hydrothermal and calcination temperatures, Res. Chem. Intermed., 38 (2012) 1733–1742.
  21. B. Mazinani, A.K. Masrom, A. Beitollahi, R. Luque, Photocatalytic activity, surface area and phase modification of mesoporous SiO2–TiO2 prepared by a one-step hydrothermal procedure, Ceram. Int., 40 (2014) 11525–11532.
  22. T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature, 378 (1995) 159–162.
  23. I.N. Germanovich, N.N. Dorozhkin, I.M. Kabel’skii, Ultrasonic impregnation of porous sintered components, Powder Metall. Met. Ceram., 1 (1964) 375–378.
  24. C. Li, Y. Wang, Y. Guo, X. Liu, Y. Guo, Z. Zhang, Y. Wang, G. Lu, Synthesis of highly ordered, extremely hydrothermal stable SBA-15/Al-SBA-15 under the assistance of sodium chloride, Chem. Mater., 19 (2007) 173–178.
  25. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279 (1998) 548–552.
  26. P. Van Der Voort, M. Benjelloun, E.F. Vansant, Rationalization of the synthesis of SBA-16: controlling the micro-and mesoporosity, J. Phys. Chem. B., 106 (2002) 9027–9032.
  27. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  28. A.V. Manole, M. Dobromir, R. Apetrei, V. Nica, D. Luca, Surface characterization of sputtered N: TiO2 thin films within a wide range of dopant concentration, Ceram. Int., 40 (2014) 9989–9995.
  29. Y. Wang, J. Zhang, X. Liu, S. Gao, B. Huang, Y. Dai, Y. Xu, Synthesis and characterization of activated carbon-coated SiO2/TiO2-xCx nanoporous composites with high adsorption capability and visible light photocatalytic activity, Mater. Chem. Phys., 135 (2012) 579–586.
  30. Z.L. Hua, J.L. Shi, L.X. Zhang, M.L. Ruan, J.N. Yan, Formation of nanosized TiO2 in mesoporous silica thin films, Adv. Mater., 14 (2002) 830–833.
  31. D.R. Sahu, L.Y. Hong, S.-C. Wang, J.-L. Huang, Synthesis, analysis and characterization of ordered mesoporous TiO2/SBA-15 matrix: effect of calcination temperature, Microporous Mesoporous Mater., 117 (2009) 640–649.
  32. X. Gao, I.E. Wachs, Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties, Catal. Today, 51 (1999) 233–254.
  33. M. Kruk, M. Jaroniec, A. Sayari, New insights into pore-size expansion of mesoporous silicates using long-chain amines, Microporous Mesoporous Mater., 35 (2000) 545–553.
  34. A.R. Oki, Q. Xu, B. Shpeizer, A. Clearfield, X. Qiu, S. Kirumakki, S. Tichy, Synthesis, characterization and activity in cyclohexene epoxidation of mesoporous TiO2–SiO2 mixed oxides, Catal. Commun., 8 (2007) 950–956.
  35. Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun, W. Hu, F. Deng, Comparative study of sol-gel-hydrothermal and sol–gel synthesis of titania– silica composite nanoparticles, J. Solid State Chem., 178 (2005) 1395–1405.
  36. B. Mazinani, A. Beitollahi, A.K. Masrom, S. Ibrahim, F. Jamil, The Effect of Aging Temperature on the Pores of Mesoporous SBA-15 Silica, AIP Conf. Proc., 2012, doi:10.1063/1.4769150.
  37. M. Addamo, V. Augugliaro, A. Di Paola, E. García-López, V. Loddo, G. Marcì, R. Molinari, L. Palmisano, M. Schiavello, Preparation, characterization, and photoactivity of polycrystalline nanostructured TiO2 catalysts, J. Phys. Chem. B., 108 (2004) 3303–3310.
  38. M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide, Chem. Mater., 14 (2002) 1974–1980.
  39. C.-C. Wang, J.Y. Ying, Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals, Chem. Mater., 11 (1999) 3113–3120.
  40. M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev., 93 (1993) 341–357.
  41. O.M. Alfano, M.I. Cabrera, A.E. Cassano, Photocatalytic reactions involving hydroxyl radical attack, J. Catal., 172 (1997) 370–379.
  42. G. Nagaraju, K. Manjunath, T.N. Ravishankar, B.S. Ravikumar, H. Nagabhushan, G. Ebeling, J. Dupont, Ionic liquid-assisted hydrothermal synthesis of TiO2 nanoparticles and its application in photocatalysis, J. Mater. Sci., 48 (2013) 8420–8426.
  43. R. Zuo, G. Du, W. Zhang, L. Liu, Y. Liu, L. Mei, Z. Li, Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite, Adv. Mater. Sci. Eng., 2014 (2014).
  44. H.E. Byrne, W.L. Kostedt, J.M. Stokke, D.W. Mazyck, Characterization of HF-catalyzed silica gels doped with Degussa P25 titanium dioxide, J. Non. Cryst. Solids, 355 (2009) 525–530.