1. S. Sato, Photocatalytic activity of NOx-doped TiO2 in the visible light region, Chem. Phys. Lett., 123 (1986) 126–128.
  2. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen doped titanium oxides, Science, 293 (2001) 269–271.
  3. D.C. Valentin, G. Pacchioni, A. Selloni, Origin of the different photoactivity of N-doped anatase and rutile TiO2, Phys. Rev. B, 70 (2004) 85116.
  4. D.C. Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello, N-TiO2: theory and experimental, Chem. Phys., 339 (2007) 44–56.
  5. A.V. Emeline, V.N. Kuznetsov, V.K. Rybchuk, N. Serpone, Visible-light-active titania photocatalysts: the case of N-TiO2 properties and some fundamental issues, Int. J. Photoenergy, 2008 (2008) 1–19.
  6. X.P. Wang, T.T. Lim, Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for bisphenol a degradation using a visible-light irradiated led photoreactor, Appl. Catal., B, 100 (2010) 355–364.
  7. S. Bangkedphol, H.E. Keenan, C.M. Davidson, A.W. Sakultantimetha, Enhancement of tributyltin degradation under natural light by N-TiO2 photocatalyst, J. Hazard. Mater., 184 (2010) 533–537.
  8. D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Carbon and nitrogen co-doped TiO2 with enhanced visible light photocatalytic activity, Ind. Eng. Chem. Res., 46 (2007) 2471–2746.
  9. F. Peng, L.F. Cai, H. Yu, H. Wang, J. Yang, Synthesis and characterization of substitutional and interstitial nitrogendoped titanium dioxides with visible light photocatalytic activity, J. Solid State Chem., 181 (2008) 130–136.
  10. C.C. Hu, T.C. Hsu, L.H. Kao, One-step cohydrothermal synthesis of nitrogen-doped titanium oxide nanotubes with enhanced visible light photocatalytic activity, Int. J. Photoenergy, 2012 (2012) 1–9.
  11. J.A. Rengifo-Herrera, J. Kiwi, C. Pulgarin, N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation, J. Photochem. Photobiol., A, 205 (2009) 109–115.
  12. I.C. Kang, Q. Zhang, S. Yin, T. Sato, F. Saito, Novel method for preparation of high visible active N-TiO2 photocatalyst with its grinding in solvent, Appl. Catal., B, 84 (2008) 570–576.
  13. W.I. Nawawi, M.A. Nawi, Carbon coated nitrogen doped P25 for the photocatalytic removal of organic pollutants under solar and low energy visible light irradiations, J. Mol. Catal. A: Chem., 383–384 (2014) 83–93.
  14. C.H. Wu, C.Y. Kuo, C.J. Lin, P.K. Chiu, Preparation of N-TiO2 using a microwave/sol-gel method and its photocatalytic activity for bisphenol a under visible-light and sunlight irradiation, Int. J. Photoenergy, 2013 (2013) 1–9.
  15. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad, K.M. Garadkar, Preparation of N-TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion, Spectrochim. Acta, Part A, 133 (2014) 669–676.
  16. N.M. Mahmoodi, M. Arami, Immobilized titania nanophotocatalysis: degradation, modeling and toxicity reduction of agricultural pollutants, J. Alloys Compd., 506 (2010) 155–159.
  17. M. Janus, K. Bubacz, J. Zatorska, E. Kusiak-Nejman, A. Czyzewski, A.W. Morawski, Preliminary studies of photocatalytic activity of gypsum plasters containing TiO2 co-modified with nitrogen and carbon, Pol. J. Chem. Technol., 17 (2015) 96–102.
  18. K.S. Virendra, P.B. Mandar, B.P. Aniruddha, Degradation of reactive red 120 dye using hydrodynamic cavitation, Chem. Eng. J., 178, (2011) 100–107.
  19. W.I. Nawawi, M.S. Azami, L.S. Ang, M.A.M. Ishak, K. Ismail, Modification and characterization of microwave assisted N doped TiO2 – a photodegradation study under suspension and immobilized system, Water Qual. Res. J., 52 (2015) 51–63.
  20. Z. Zhang, X. Weng, K. Gong, J.A. Darr, Photocatalytic activity of nitrogen doped nano-titanias and titanium nitride towards methyl blue decolouration, NSTI Nanotech, 1 (2008) 680–683.
  21. Z. Wang, W. Cai, X. Hong, X. Zhao, F. Xu, C. Cai, Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources, Appl. Catal., B, 57 (2005) 223–231.
  22. Z. Xie, Y. Zhang, X. Liu, W. Wang, P. Zhan, Z. Li, Z. Zhang, Visible light photoelectrochemical properties of N-TiO2 nanorod arrays from TiN, J. Nanomater., 2013 (2013) 1–8.
  23. H.R. An, H.L. An, W.B. Kim, H.J. Ahn, Nitrogen-TiO2 nanoparticle-carbon nanofiber composites as a counter electrode for Pt-Free dye-sensitized solar cells, ECS Solid State Lett., 3 (2014) 33–36.
  24. K. Masaaki, F. Keisho, M. Masaya, U. Michio, A. Masakazu, Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation, 110 (2006) 25266–25272.
  25. F. Hiroki, G.L. Carlos, W.Z. Frank, Controlling mechanical properties of porous mullite/alumina mixtures via precursorderived alumina, J. Am. Ceram. Soc., 2 (2005) 367–375.
  26. X.T. Zhou, H.B. Ji, X.-J, Huang, Photocatalytic degradation of methyl orange over metalloporphyrins supported on TiO2 Degussa P25, Molecules, 17 (2012) 1149–1158.
  27. Y. Hu, H. Liu, X. Kong, X. Guo, Effect of calcination on the visible light photocatalytic activity of N-TiO2 prepared by the sol-gel method, J. Nanosci. Nanotechnol., 13 (2013) 1–6.
  28. D. Huang, S. Liao, S. Quan, L. Liu, Z. He, J. Wan, W. Zhou, Synthesis and characterization of visible light responsive N–TiO2 mixed crystal by a modified hydrothermal process, J. Non-Cryst. Solids, 354 (2008) 3965–3972.
  29. M. Sathish, B. Viswanathan, R.P. Viswanath, Characterization and photocatalytic activity of N-TiO2 prepared by thermal decomposition of Ti–melamine complex, Appl. Catal., B, 74 (2007) 307–312.
  30. H.M. Yates, M.G. Nolan, D.W. Sheel, M.E. Pemble, The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition, J. Photochem. Photobiol., A, 179 (2006) 213–223.
  31. Y.K. Chao, H.Y. Ya, Exploring the photodegradation of bisphenol A in a sunlight/immobilized N-TiO2 system, Pol. J. Environ. Stud., 23 (2014) 379–384.
  32. Y.T. Lin, C.H. Weng, H.J. Hsu, Y.H. Lin, C.C. Shiesh, The synergistic effect of nitrogen dopant and calcination temperature on the visible-light-induced photoactivity of N-TiO2, Int. J. Photoenergy, 2013 (2013) 1–13.
  33. L. Zhu, J. Xie, X. Cui, J. Shen, X. Yang, Z. Zhang, Photoelectrochemical and optical properties of N-TiO2 thin films prepared by oxidation of sputtered TiNx films, Vacuum, 84 (2010) 797–802.
  34. K.S. Rane, R. Mhalsiker, S. Yin, T. Sato, K. Cho, E. Dunbar, P. Biswas, Visible light-sensitive yellow TiO2–XNX and Fe-N co-doped. Ti1–yFeyO2–XNX anatase photocatalysts, J. Solid State Chem., 179 (2006) 3033–3044.
  35. V. Etacheri, M. Seery, J. Hinder, S. Pillai, Nanostructured Ti1–xSxO2–yNy heterojunctions for efficient visible-light-induced photocatalysis, Inorg. Chem., 51 (2012) 7164–7173.
  36. M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-TiO2 nanocatalyst, Chem. Mater., 17 (2005) 6349–6353.
  37. G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, Preparation of highly visible-light active N-TiO2 photocatalyst, J. Mater. Chem., 20 (2010) 5301–5309.
  38. Y.G. Zhang, L.L. Ma, J.L. Li, Y. Yu, In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation, Environ. Sci. Technol., 41 (2007) 6264–6269.
  39. Y. Wang, M. Jing, M. Zhang, J. Yang, Facile synthesis and photocatalytic activity of platinum decorated TiO2−xNx: perspective to oxygen vacancies and chemical state of dopants, Catal. Commun., 20 (2012) 46–50.
  40. J. Tauc, A. Menth, State in the band gap, J. Non-Cryst. Solids, 11 (1972) 569–585.
  41. F. Peng, L. Cai, L. Huang, H. Yu, H. Wang, Preparation of nitrogen-doped titanium dioxide with visible light photocatalytic activity using a facile hydrothermal method, J. Phys. Chem. Solids, 69 (2008) 1657–1664.
  42. W.I. Nawawi, M.A. Nawi, Electron scavenger of thin layer carbon coated and nitrogen doped P25 with enhanced photocatalytic activity under visible light fluorescent lamp, J. Mol. Catal. A: Chem., 374–375 (2013) 39–45.
  43. W. Kim, T. Tachikawa, H. Kim, N. Lakshminarasimhan, P. Murugan, H. Park, T. Majima, W. Choi, Visible light photocatalytic activities of nitrogen and platinum-doped TiO2: synergistic effects of co-dopants, Appl. Catal., B, 147 (2014) 642– 650.
  44. H. Wang, X. Gao, G. Duan, X. Yang, X. Liu, Facile preparation of anatase-brookite-rutile mixed-phase N-TiO2 with high visiblelight photocatalytic activity, J. Environ. Chem. Eng., 3 (2015) 603–608.
  45. C.W. Dunnilla, I.P. Parkin, Nitrogen-doped TiO2 thin films: photocatalytic applications for healthcare environments, Dalton Trans., 40 (2011) 1635–1640.
  46. Z. Li, Y. Zhu, F. Pang, H. Liu, X. Gao, W. Ou, J. Liu, X. Wang, X. Cheng, Y. Zhang, Synthesis of N doped and N, S co-doped 3D TiO2 hollow spheres with enhanced photocatalytic efficiency under nature sunlight, Ceram. Int., 41 (2015) 10063–10069.
  47. K. Kalantari, M. Kalbasi, M. Sohrabi, S.J. Royaee, Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light, Ceram. Int., 42 (2016) 2016.