References

  1. Z. Qin, S. Liu, S. Liang, Q. Kang, J. Wang, C. Zhao, Advanced treatment of pharmaceutical wastewater with combined microelectrolysis, Fenton oxidation, and coagulation sedimentation method, Desal. Wat. Treat., 57 (2016) 25369–25378.
  2. G. Shankaraiah, S. Poodari, D. Bhagawan, V. Himabindu, S. Vidyavathi, Degradation of antibiotic norfloxacin in aqueous solution using advanced oxidation processes (AOPs)—A comparative study, Desal. Wat. Treat., 57 (2016) 27804–27815.
  3. E.S. Elmolla, M. Chaudhuri, Combined photo-Fenton–SBR process for antibiotic wastewater treatment, J. Hazard. Mater., 192 (2011) 1418–1426.
  4. E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination, 252 (2010) 46–52.
  5. S. Su, W. Guo, C. Yi, Y. Leng, Z. Ma, Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation, Ultrason. Sonochem., 19 (2012) 469–474.
  6. B. Panda, A survey on the present status of sustainable technologies for water pollutant abatement, Desal. Wat. Treat., 57 (2016) 28705–28714.
  7. M.E. Pulido, V.L. Santana, E. Otal, R.J.M. Doña, D.E. Santiago, P.C. Fernández, D.O. González, L.F. Vilches, Valorisation of a by-product from the TiO2 pigment industry for its application in advanced oxidation processes, Desal. Wat. Treat., 57 (2016) 26211–26221.
  8. A.J. Kedir, B. Tawabini, A. Al-Shaibani, A.A. Bukhari, Treatment of water contaminated with methyl tertiary butyl ether using UV/chlorine advanced oxidation process, Desal. Wat. Treat., 57 (2016) 19939–19945.
  9. P.R. Gogate, Cavitation: an auxiliary technique in wastewater treatment schemes, Adv. Environ. Res., 6 (2002) 335–358.
  10. M. Capocelli, M. Prisciandaro, A. Lancia, D. Musmarra, Cavitational reactor for advanced treatment of contaminated water: the effect of recovery pressure, Desal. Wat. Treat., 55 (2015) 3172–3177.
  11. C.D. Wu, Z.L. Zhang, Y. Wu, L. Wang, L.J. Chen, Effects of operating parameters and additives on degradation of phenol in water by the combination of H2O2 and hydrodynamic cavitation, Desal. Wat. Treat., 53 (2015) 462–468.
  12. Y. Tao, J. Cai, X. Huai, B. Liu, Z. Guo, Application of hydrodynamic cavitation to wastewater treatment, Chem. Eng. Technol., 39 (2016) 1363–1376.
  13. M. Capocelli, D. Musmarra, M. Prisciandaro, A. Lancia, Chemical effect of hydrodynamic cavitation: simulation and experimental comparison, AIChE J., 60 (2014) 2566–2572.
  14. P.N. Patil, P.R. Gogate, Degradation of methyl parathion using hydrodynamic cavitation: effect of operating parameters and intensification using additives, Sep. Purif. Technol., 95 (2012) 172–179.
  15. M.V. Bagal, P.R. Gogate, Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis, Ultrason. Sonochem., 21 (2014) 1035–1043.
  16. P.N. Patil, S.D. Bote, P.R. Gogate, Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation, Ultrason. Sonochem., 21 (2014) 1770–1777.
  17. A.G. Chakinala, P.R. Gogate, A.E. Burgess, D.H. Bremner, Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process, Ultrason. Sonochem., 15 (2008) 49–54.
  18. X. Wang, J. Wang, P. Guo, W. Guo, G. Li, Chemical effect of swirling jet-induced cavitation: degradation of rhodamine B in aqueous solution, Ultrason. Sonochem., 15 (2008) 357–363.
  19. J. Wang, X. Wang, P. Guo, J. Yu, Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2, Ultrason. Sonochem., 18 (2011) 494–500.
  20. M. Petkovšek, M. Zupanc, M. Dular, T. Kosjek, E. Heath, B. Kompare, B. Širok, Rotation generator of hydrodynamic cavitation for water treatment, Sep. Purif. Technol., 118 (2013) 415–423.
  21. M.P. Badve, P.R. Gogate, A.B. Pandit, L. Csoka, Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry, Sep. Purif. Technol., 106 (2013) 15–21.
  22. P.R. Gogate, A.B. Pandit, Hydrodynamic cavitation reactors: a state of the art review, Rev. Chem. Eng., 17 (2001) 1–85.
  23. N.P. Vichare, P.R. Gogate, A.B. Pandit, Optimization of hydrodynamic cavitation using a model reaction, Chem. Eng. Technol., 23 (2000) 683–690.
  24. P.R. Gogate, A.B. Pandit, Engineering design methods for cavitation reactors II: hydrodynamic cavitation, AIChE J., 46 (2000) 1641–1649.
  25. K.P. Mishra, P.R. Gogate, Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives, Sep. Purif. Technol., 75 (2010) 385–391.
  26. L.P. Amin, P.R. Gogate, A.E. Burgess, D.H. Bremner, Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry, Chem. Eng. J., 156 (2010) 165–169.
  27. A.G. Chakinala, P.R. Gogate, R. Chand, D.H. Bremner, R. Molina, A.E. Burgess, Intensification of oxidation capacity using chloroalkanes as additives in hydrodynamic and acoustic cavitation reactors, Ultrason. Sonochem., 15 (2008) 164–170.
  28. A.G. Chakinala, D.H. Bremner, P.R. Gogate, K.-C. Namkung, A.E. Burgess, Multivariate analysis of phenol mineralisation by combined hydrodynamic cavitation and heterogeneous advanced Fenton processing, Appl. Catal., B, 78 (2008) 11–18.
  29. M.V. Bagal, P.R. Gogate, Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review, Ultrason. Sonochem., 21 (2014) 1–14.
  30. E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
  31. J. Rae, M. Ashokkumar, O. Eulaerts, C. von Sonntag, J. Reisse, F. Grieser, Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions, Ultrason. Sonochem., 12 (2005) 325–329.
  32. Z. Guo, R. Feng, J. Li, Z. Zheng, Y. Zheng, Degradation of 2,4-dinitrophenol by combining sonolysis and different additives, J. Hazard. Mater., 158 (2008) 164–169.
  33. J. Wang, Y. Guo, P. Guo, J. Yu, W. Guo, X. Wang, Degradation of reactive brilliant red K-2BP in water using a combination of swirling jet-induced cavitation and Fenton process, Sep. Purif. Technol., 130 (2014) 1–6.
  34. M.V. Bagal, P.R. Gogate, Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes, Ultrason. Sonochem., 20 (2013) 1226–1235.
  35. Y. Tao, J. Cai, X. Huai, B. Liu, A novel device for hazardous substances degradation based on double-cavitating-jets impingement: parameters optimization and efficiency assessment, J. Hazard. Mater., 335 (2017) 188–196.
  36. R. Salazar, E. Brillas, I. Sirés, Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3, Appl. Catal., B, 115 (2012) 107–116.
  37. S.M. Sunaric, S.S. Mitic, G.Z. Miletic, A.N. Pavlovic, D.D. Naskovic, Determination of doxycycline in pharmaceuticals based on its degradation by Cu(II)/H2O2 reagent in aqueous solution, J. Anal. Chem., 64 (2009) 231–237.
  38. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review, Appl. Catal., A, 359 (2009) 25–40.
  39. H.H.H. Lin, A.Y.C. Lin, Photocatalytic oxidation of 5-fluorouracil and cyclophosphamide via UV/TiO2 in an aqueous environment, Water Res., 48 (2014) 559–568.
  40. A.L. Giraldo, G.A. Peñuela, P.R.A. Torres, N.J. Pino, R.A. Palominos, H.D. Mansilla, Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension, Water Res., 44 (2010) 5158–5167.