References
- Z. Qin, S. Liu, S. Liang, Q. Kang, J. Wang, C. Zhao, Advanced
treatment of pharmaceutical wastewater with combined microelectrolysis,
Fenton oxidation, and coagulation sedimentation
method, Desal. Wat. Treat., 57 (2016) 25369–25378.
- G. Shankaraiah, S. Poodari, D. Bhagawan, V. Himabindu,
S. Vidyavathi, Degradation of antibiotic norfloxacin in
aqueous solution using advanced oxidation processes
(AOPs)—A comparative study, Desal. Wat. Treat., 57 (2016)
27804–27815.
- E.S. Elmolla, M. Chaudhuri, Combined photo-Fenton–SBR
process for antibiotic wastewater treatment, J. Hazard. Mater.,
192 (2011) 1418–1426.
- E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of
amoxicillin, ampicillin and cloxacillin antibiotics in aqueous
solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis,
Desalination, 252 (2010) 46–52.
- S. Su, W. Guo, C. Yi, Y. Leng, Z. Ma, Degradation of amoxicillin
in aqueous solution using sulphate radicals under ultrasound
irradiation, Ultrason. Sonochem., 19 (2012) 469–474.
- B. Panda, A survey on the present status of sustainable
technologies for water pollutant abatement, Desal. Wat. Treat.,
57 (2016) 28705–28714.
- M.E. Pulido, V.L. Santana, E. Otal, R.J.M. Doña, D.E. Santiago,
P.C. Fernández, D.O. González, L.F. Vilches, Valorisation of a
by-product from the TiO2 pigment industry for its application
in advanced oxidation processes, Desal. Wat. Treat., 57 (2016)
26211–26221.
- A.J. Kedir, B. Tawabini, A. Al-Shaibani, A.A. Bukhari, Treatment
of water contaminated with methyl tertiary butyl ether using
UV/chlorine advanced oxidation process, Desal. Wat. Treat., 57
(2016) 19939–19945.
- P.R. Gogate, Cavitation: an auxiliary technique in wastewater
treatment schemes, Adv. Environ. Res., 6 (2002) 335–358.
- M. Capocelli, M. Prisciandaro, A. Lancia, D. Musmarra,
Cavitational reactor for advanced treatment of contaminated
water: the effect of recovery pressure, Desal. Wat. Treat., 55
(2015) 3172–3177.
- C.D. Wu, Z.L. Zhang, Y. Wu, L. Wang, L.J. Chen, Effects of
operating parameters and additives on degradation of phenol
in water by the combination of H2O2 and hydrodynamic
cavitation, Desal. Wat. Treat., 53 (2015) 462–468.
- Y. Tao, J. Cai, X. Huai, B. Liu, Z. Guo, Application of
hydrodynamic cavitation to wastewater treatment, Chem. Eng.
Technol., 39 (2016) 1363–1376.
- M. Capocelli, D. Musmarra, M. Prisciandaro, A. Lancia,
Chemical effect of hydrodynamic cavitation: simulation and
experimental comparison, AIChE J., 60 (2014) 2566–2572.
- P.N. Patil, P.R. Gogate, Degradation of methyl parathion using
hydrodynamic cavitation: effect of operating parameters and
intensification using additives, Sep. Purif. Technol., 95 (2012)
172–179.
- M.V. Bagal, P.R. Gogate, Degradation of diclofenac sodium
using combined processes based on hydrodynamic cavitation
and heterogeneous photocatalysis, Ultrason. Sonochem., 21
(2014) 1035–1043.
- P.N. Patil, S.D. Bote, P.R. Gogate, Degradation of imidacloprid using
combined advanced oxidation processes based on hydrodynamic
cavitation, Ultrason. Sonochem., 21 (2014) 1770–1777.
- A.G. Chakinala, P.R. Gogate, A.E. Burgess, D.H. Bremner,
Treatment of industrial wastewater effluents using
hydrodynamic cavitation and the advanced Fenton process,
Ultrason. Sonochem., 15 (2008) 49–54.
- X. Wang, J. Wang, P. Guo, W. Guo, G. Li, Chemical effect of
swirling jet-induced cavitation: degradation of rhodamine B in
aqueous solution, Ultrason. Sonochem., 15 (2008) 357–363.
- J. Wang, X. Wang, P. Guo, J. Yu, Degradation of reactive brilliant
red K-2BP in aqueous solution using swirling jet-induced
cavitation combined with H2O2, Ultrason. Sonochem., 18 (2011)
494–500.
- M. Petkovšek, M. Zupanc, M. Dular, T. Kosjek, E. Heath,
B. Kompare, B. Širok, Rotation generator of hydrodynamic
cavitation for water treatment, Sep. Purif. Technol., 118 (2013)
415–423.
- M.P. Badve, P.R. Gogate, A.B. Pandit, L. Csoka, Hydrodynamic
cavitation as a novel approach for wastewater treatment in
wood finishing industry, Sep. Purif. Technol., 106 (2013) 15–21.
- P.R. Gogate, A.B. Pandit, Hydrodynamic cavitation reactors: a
state of the art review, Rev. Chem. Eng., 17 (2001) 1–85.
- N.P. Vichare, P.R. Gogate, A.B. Pandit, Optimization of
hydrodynamic cavitation using a model reaction, Chem. Eng.
Technol., 23 (2000) 683–690.
- P.R. Gogate, A.B. Pandit, Engineering design methods for
cavitation reactors II: hydrodynamic cavitation, AIChE J., 46
(2000) 1641–1649.
- K.P. Mishra, P.R. Gogate, Intensification of degradation of
Rhodamine B using hydrodynamic cavitation in the presence of
additives, Sep. Purif. Technol., 75 (2010) 385–391.
- L.P. Amin, P.R. Gogate, A.E. Burgess, D.H. Bremner,
Optimization of a hydrodynamic cavitation reactor using
salicylic acid dosimetry, Chem. Eng. J., 156 (2010) 165–169.
- A.G. Chakinala, P.R. Gogate, R. Chand, D.H. Bremner, R.
Molina, A.E. Burgess, Intensification of oxidation capacity
using chloroalkanes as additives in hydrodynamic and acoustic
cavitation reactors, Ultrason. Sonochem., 15 (2008) 164–170.
- A.G. Chakinala, D.H. Bremner, P.R. Gogate, K.-C. Namkung,
A.E. Burgess, Multivariate analysis of phenol mineralisation
by combined hydrodynamic cavitation and heterogeneous
advanced Fenton processing, Appl. Catal., B, 78 (2008) 11–18.
- M.V. Bagal, P.R. Gogate, Wastewater treatment using hybrid
treatment schemes based on cavitation and Fenton chemistry:
a review, Ultrason. Sonochem., 21 (2014) 1–14.
- E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation
as an advanced oxidation technique, J. Hazard. Mater., 98 (2003)
33–50.
- J. Rae, M. Ashokkumar, O. Eulaerts, C. von Sonntag, J. Reisse,
F. Grieser, Estimation of ultrasound induced cavitation bubble
temperatures in aqueous solutions, Ultrason. Sonochem., 12
(2005) 325–329.
- Z. Guo, R. Feng, J. Li, Z. Zheng, Y. Zheng, Degradation of
2,4-dinitrophenol by combining sonolysis and different
additives, J. Hazard. Mater., 158 (2008) 164–169.
- J. Wang, Y. Guo, P. Guo, J. Yu, W. Guo, X. Wang, Degradation
of reactive brilliant red K-2BP in water using a combination of
swirling jet-induced cavitation and Fenton process, Sep. Purif.
Technol., 130 (2014) 1–6.
- M.V. Bagal, P.R. Gogate, Degradation of 2,4-dinitrophenol
using a combination of hydrodynamic cavitation, chemical and
advanced oxidation processes, Ultrason. Sonochem., 20 (2013)
1226–1235.
- Y. Tao, J. Cai, X. Huai, B. Liu, A novel device for hazardous
substances degradation based on double-cavitating-jets
impingement: parameters optimization and efficiency
assessment, J. Hazard. Mater., 335 (2017) 188–196.
- R. Salazar, E. Brillas, I. Sirés, Finding the best Fe2+/Cu2+
combination for the solar photoelectro-Fenton treatment of
simulated wastewater containing the industrial textile dye
Disperse Blue 3, Appl. Catal., B, 115 (2012) 107–116.
- S.M. Sunaric, S.S. Mitic, G.Z. Miletic, A.N. Pavlovic, D.D.
Naskovic, Determination of doxycycline in pharmaceuticals
based on its degradation by Cu(II)/H2O2 reagent in aqueous
solution, J. Anal. Chem., 64 (2009) 231–237.
- F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam,
R. Naidu, Tailored titanium dioxide photocatalysts for the
degradation of organic dyes in wastewater treatment: a review,
Appl. Catal., A, 359 (2009) 25–40.
- H.H.H. Lin, A.Y.C. Lin, Photocatalytic oxidation of
5-fluorouracil and cyclophosphamide via UV/TiO2 in an
aqueous environment, Water Res., 48 (2014) 559–568.
- A.L. Giraldo, G.A. Peñuela, P.R.A. Torres, N.J. Pino, R.A.
Palominos, H.D. Mansilla, Degradation of the antibiotic oxolinic
acid by photocatalysis with TiO2 in suspension, Water Res., 44
(2010) 5158–5167.