1. T. Lyubimova, A. Lepikhin, Y. Parshakova, A. Tiunov A, The risk of river pollution due to washout from contaminated floodplain water bodies during periods of high magnitude floods, J. Hydrol., 534 (2016) 579–589.
  2. T. Ahmad, K. Ahmad, M. Alam, Sustainable management of water treatment sludge through 3‘R’ concept, J. Cleaner Prod., 124 (2016) 1–13.
  3. F. Mansour, M. Al-Hindi, W. Saad, D. Salam, Environmental risk analysis and prioritization of pharmaceuticals in a developing world context, Sci. Total Environ., 31 (2016) 557–558.
  4. M. Tankiewicz, J. Namieśnik, W. Sawicki, Analytical procedures for quality control of pharmaceuticals in terms of residual solvents content: challenges and recent developments, Trends Anal. Chem., 80 (2016) 328–344.
  5. M. Borecka, G. Siedlewicz, L.P. Halinśki, K. Sikora, K. Pazdro, P. Stepnowski, A. Białk-Bielinśka, Contamination of the southern Baltic Sea waters by the residues of selected pharmaceuticals: method development and field studies, Mar. Pollut. Bull., 94 (2015) 62–71.
  6. C. Gómez-Canela, T.H. Miller, N.R. Bury, R. Tauler, L.P. Barron, Targeted metabolomics of Gammarus pulex following controlled exposures to selected pharmaceuticals in water, Sci. Total Environ., 562 (2016) 777.
  7. F. Yu, Y. Li, S. Han, J. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, 153 (2016) 365–385.
  8. Ö. Kerkez-Kuyumcu, Ş.S. Bayazit, M.A. Salam. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets, J. Ind. Eng. Chem., 36 (2016) 198–205.
  9. J. Ory, G. Bricheux, A. Togola, J.L. Bonnet, F. Donnadieu-Bernard, L. Nakusi, C. Forestier, O. Traore, Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent, Environ. Pollut., 214 (2016) 635–645.
  10. W. Deng, N. Li, H. Zheng, H. Lin, Occurrence and risk assessment of antibiotics in river water in Hong Kong, Ecotox. Environ. Safety, 125 (2016) 121–127.
  11. Y. Li, Q. Li, Q. Zhou, X. Sun, L. Zhao, Y. Zhang, Occurrence and distribution of the environmental pollutant antibiotics in Gaoqiao mangrove area, China, Chemosphere, 147 (2016) 25–35.
  12. J. Wang, W. Ben, M. Yang, Y. Zhang, Z. Qiang, Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths, Environ. Int., 92–93 (2016) 317–323.
  13. X. Zhang, W. Guo, H.H. Hao, H. Wen, N. Li, W. Wu, Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water, J. Environ. Manage., 172 (2016) 193–200.
  14. G. Nazari, H. Abolghasemia, M. Esmaielia, E.S. Pouya, Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: a fixed-bed column study, Appl. Surf. Sci., 375 (2016) 144–153.
  15. M. Miao, Q. Liu, L. Shu, Z. Wang, Y. Liu, Q. Kong, Removal of cephalexin from effluent by activated carbon prepared from alligator weed: kinetics, isotherms, and thermodynamic analyses, Proc. Safety Environ. Prot., 104 (2016) 481–489.
  16. W.A. Craig, D. R. Andes, Cephalosporins: Mandell, Douglas, and Benett’s Principles and Practice of Infectious Diseases. 7th ed., Churchill Livingstone, London, 2009.
  17. G. Nazari, H. Abolghasemi, M. Esmaieli, Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shellbased activated carbon, J. Taiwan Inst. Chem. Eng., 58 (2016) 357–365.
  18. K. Lata, R. Sharma, L. Naik, Y. S. Rajput, B. Mann, Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk, Food Chem., 184 (2015) 176–182.
  19. N. Ajoudanian, A. Nezamzadeh-Ejhieh, Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin, Mater. Sci. Semicond. Process., 36 (2015) 162–169.
  20. M.R. Samarghandi, T.J. Al-Musawi, A. Mohseni-Bandpi, M. Zarrabi, Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles, J. Mol. Liq., 211 (2015) 431–441.
  21. M.J. Ahmad, S.K. Theydan, Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations, Chem. Eng. J., 211–212 (2012) 200–207.
  22. Q. Kong, Y. Wang, L. Shu, M. Miao, Isotherm, kinetic, and thermodynamic equations for cefalexin removal from liquids using activated carbon synthesized from loofah sponge, Desal. Wat. Treat., 57 (2016) 7933–7942.
  23. D. Fabbri, M. Minella, V. Maurino, C. Minero, D. Vione, A model assessment of the importance of direct photolysis in the photofate of cephalosporins in surface waters: possible formation of toxic intermediates, Chemosphere, 134 (2015) 452–458.
  24. W. Guo, H. Wang, Y. Shi, G. Zhang, Sonochemical degradation of the antibiotic cephalexin in aqueous solution, Water SA, 2010, 36, 651.
  25. S. Giannakis, F.A. Gamarra Vives, D. Grandjean, A. Magnet, L.F. De Alencastro, C. Pulgarin, Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods, Water Res., 84 (2015) 295–306.
  26. C. Nie, N. Shao, B. Wang, D. Yuan, X. Sui, H. Wu, Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater, Chemosphere, 154 (2016) 604–612.
  27. M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review, Chem. Eng. J., 284 (2016) 582–598.
  28. Y. Xu, Z. Lin, H. Zhang, Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS vs. UV/H2O2, Chem. Eng. J., 285 (2016) 392–401.
  29. Y. Zhang, Y. Zhuang, J. Geng, H. Ren, K. Xu, L. Ding, Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes, Sci. Total Environ., 550 (2016) 184–191.
  30. Y.J. Jung, W.G. Kim, Y. Yoon, J. Kang, Y.M. Hong, H.W. Kim, Removal of amoxicillin by UV and UV/H2O2 processes, Sci. Total Environ., 420 (2012) 160–167.
  31. W. Guo, Y. Shi, H. Wan, H. Yang, G. Zhang, Intensification of sonochemical degradation of antibiotics levofloxacin using carbon tetrachloride, Ultrason. Sonochem., 17 (2010) 680–684.
  32. S.N. Sanusi, M.E. Halmi, S.S. Abdullaha, H.A. Hassana, F. M. Hamzahb, M. Idris, Comparative process optimization of pilot-scale total petroleum hydrocarbon (TPH) degradation by Paspalum scrobiculatum L. Hack using response surface methodology (RSM) and artificial neural networks (ANNs), Ecol. Eng., 97 (2016) 524–534.
  33. S. Haykin, Redes Neurais: Princípios e Práticas, 5th ed., Artmed, São Paulo, 2001, pp. 28–45.
  34. R. Willumeit, F. Freyerabend, N. Huber, Magnesium degradation as determined by artificial neural networks, Acta Biomaterialia, 9 (2013) 8722–8729.
  35. L. Das, U. Maity, J.K. Basu, The photocatalytic degradation of carbamazepine and prediction by artificial neural networks, Proc. Safety Environ. Prot., 92 (2014) 888–895.
  36. D. Bingöl, M. Hercan, S. Elevli, E. Kiliç, Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin, Biores. Technol, 112 (2012) 111–115.
  37. J.X. Ravikumar, M.D. Gurol, Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand, Environ. Sci. Technol., 28 (1994) 393.
  38. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association and Water Environment Federation, New York, 2005.
  39. S. Göb, E. Oliveros, S.H. Bossmann, A.M. Braun, R. Guardani, C. A. O. Nascimento, Modeling the kinetics of a photochemical water treatment process by means of artificial neural networks, Chem. Eng. Proc., 38 (1999) 373–382.
  40. J.A. Giroto, R. Guardani, A.C.S.C. Teixeira, C.A.O. Nascimento, Study on the photo-Fenton degradation of polyvinyl alcohol in aqueous solution, Chem. Eng. Proc., 45 (2006) 523–532.
  41. J. Kennedy, R. Eberhart, Particle Swarm Optimization, IEEE International Conference, 1995.
  42. S. Haikin, Neural Networks: A Comprehensive Foundation, 2nd. ed., Prentice Hall, Upper Saddle River, 1999.
  43. C. Lin, H. Lin, L. Hsu, Degradation of ofloxacin using UV/H2O2 process in a large photoreactor, Sep. Purif. Technol., 168 (2016) 57–61.
  44. D. Rubio, E. Nebot, J.F. Casanueva, C. Pulgarin, Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV–Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater, Water Res., 47 (2013) 6367–6379.
  45. F.V. Araújo, L. Yokoyama, L.A. Teixeira, Quím. Nova, 9 (2006) 11.
  46. E.R.L. Tiburtius, P.P. Zamora, E.S. Leal, Quím. Nova, 27, (2004) 441.
  47. W. Zhang, C.R. Wilson, N.D. Danielson, Indirect fluorescent determination of selected nitro-aromatic and pharmaceutical compounds via UV-photolysis of 2-phenylbenzimidazole-5-sulfonate, Talanta, 74 (2008) 1400–1407.
  48. M. Darwish, A. Mohammadi, N. Assi, Integration of nickel doping with loading on graphene for enhanced adsorptive and catalytic properties of CdS nanoparticles towards visible light degradation of some antibiotics, J. Hazard. Mater., 320 (2016) 304–314.
  49. P. Bansal, A. Verma, K. Aggarwal, A. Singh, S. Gupta, Investigations on the degradation of an antibiotic cephalexin using suspended and supported TiO2: mineralization and durability studies, Can. J. Chem. Eng., 94 (2016) 1269–1276.